Skip to main content

10 Amino Acids and Brain Volume Regulation: Contribution and Mechanisms

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Cell volume is continuously compromised by the generation of local and transient osmotic microgradients associated with uptake of nutrients, secretion, cytoskeletal remodeling and transynaptic ionic gradients. It is also disturbed in pathological conditions including those leading to hyponatremia or those associated with ion redistribution such as ischemia, trauma and epilepsy. Changes in cell volume, swelling or shrinkage, appear as key signals in directing the cell death type to necrosis or apoptosis and as signals for proliferation. Cell swelling in brain is critical since the limited expansion imposed by the rigid cranium results in vascular rupture and the consequent ischemic episodes and neuronal death. Besides, disturbing the extracellular/intracellular ionic equilibrium in the brain, as occurs in isosmotic swelling or during volume recovery after hyposmotic swelling results in hyperexcitability and hypersynchrony of neuronal activity. Therefore, the role for amino acids as osmolytes in volume regulation, particularly those being synaptically inhibitory or inert is of particular importance. However, others such as glutamate exacerbate neuronal excitability and lead ultimately to excitotoxicity and neuronal death. Understanding the implication of amino acids in cell volume control, and elucidating the signals and mechanisms underlying their participation is crucial to the design of strategies to prevent swelling and to protect brain cells, neurons particularly, from the deleterious effects of ionic disequilibrium and excitotoxicity. This is important also for avoiding the dangers of a rapid correction of the osmolarity of external fluids in hyponatremic conditions. This review presents an overview of the available information about the amino acid contribution to volume regulation after swelling in hyposmotic and isosmotic conditions, their role in volume recovery after cell shrinkage and their implication in cell volume changes during apoptosis and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaMKII:

calcium-calmodulin kinase II

CGN:

cerebellar granule neurons

EAAC1:

excitatory amino acid transporter-1

EAAT:

excitatory amino acid transporter

EGTA-AM:

EGTA Acetoxymethyl ester

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

JNK:

Jun N-terminal kinase

MAP:

mitogen-activated protein

PI3K:

phosphatidyl inositol 3'-kinase

PKA:

protein kinase A

PKC:

protein kinase C

RVD:

regulatory volume decrease

TAUT:

taurine transporter

TBOA:

DL-threo-β-benzyloxyaspartate

TonEBP :

tonicity-responsive enhancer binding protein

TonE :

tonicity-responsive enhancer element

References

  • Allen NJ, Rossi DJ, Attwell D. 2004. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci 24: 3837–3849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arundine M, Tymianski M. 2004. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61: 657–668.

    Article  CAS  PubMed  Google Scholar 

  • Baker EA, Tian Y, Adler S, Verbalis JG. 2000. Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol 165: 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Baraban SC, Schwartzkroin PA. 1998. Effects of hyposmolar solutions on membrane currents of hippocampal interneurons and mossy cells in vitro. J Neurophysiol 79: 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  • Beetsch JW, Olson JE. 1996. Hyperosmotic exposure alters total taurine quantity and cellular transport in rat astrocyte cultures. Biochim Biophys Acta 1290: 141–148.

    Article  PubMed  Google Scholar 

  • Beetsch JW, Olson JE. 1998. Taurine synthesis and cysteine metabolism in cultured astrocytes: Effects of hyperosmotic exposure. Am J Physiol Cell Physiol 274: C866–C874.

    Article  CAS  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374.

    CAS  PubMed  Google Scholar 

  • Berl T. 1990. Treating hyponatremia: Damned if we do and damned if we don't. Kidney Int 37: 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  • Bitoun M, Tappaz M. 2000. Gene expression of the transporters and biosynthetic enzymes of the osmolytes in astrocyte primary cultures exposed to hyperosmotic conditions. Glia 32: 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Bortner CD, Cidlowski JA. 2004. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Eur J Physiol Pflugers Arch 448: 313–318.

    Article  CAS  Google Scholar 

  • Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, et al. 2002. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia 45: 856–866.

    Article  CAS  PubMed  Google Scholar 

  • Burg MB, Know ED, Kultz D. 1997. Regulation of gene expression by hypertonicity. Annu Rev Physiol 59: 437–455.

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF. 2003. Molecular neurobiology of acute liver failure. Semin Liver Dis 23: 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Cardin V, Lezama R, Torres-Márquez ME, Pasantes-Morales H. 2003. Potentiation of the osmosensitive taurine release and cell volume regulation by cytosolic Ca rise in cultured cerebellar astrocytes. Glia 44: 119–128.

    Article  PubMed  Google Scholar 

  • Chebabo SR, Hester MA, Aitken PG, Somjen GG. 1995. Hypotonic exposure enhances synaptic transmission and triggers spreading depression in rat hippocampal tissue slices. Brain Res 695: 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Chen XC, Pan ZL, Liu DS, Han X. 1998. Effect of taurine on human fetal neuron cells: Proliferation and differentiation. Adv Exp Med Biol 442: 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Chen YX, Zhang XR, Xie WF, Li S. 2004. Effects of taurine on proliferation and apoptosis of hepatic stellate cells in vitro. Hepatobiliary Pancreat Dis Int 3: 106–109.

    CAS  PubMed  Google Scholar 

  • Davies SE, Gotoh M, Richards DA, Obrenovitch TP. 1998. Hypoosmolarity induces an increase of extracellular N-acetylaspartate concentration in the rat striatum. Neurochem Res 23: 1021–1025.

    Article  CAS  PubMed  Google Scholar 

  • Deleuze C, Duvoid A, Moos FC, Hussy N. 2000. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J Physiol 523: 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez AY, O'Regan MH, Song D, Phillis JW. 1999. Effects of anion channel blockers on hyposmolitally induced amino acid release from the in vivo rat cerebral cortex. Neurochem Res 24: 447–452.

    Article  CAS  PubMed  Google Scholar 

  • Felipo V, Butterworth RF. 2002. Neurobiology of ammonia. Prog Neurobiol 67: 259–279.

    Article  CAS  PubMed  Google Scholar 

  • Ferraris JD, Williams CK, Martin BM, Bourg MB, García-Pérez A. 1994. Cloning, genomic organization and osmotic response of the aldose reductase gene. Proc Natl Acad Sci USA 91: 10742–10746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraris JD, Williams CK, Ohtaka A, Garcia-Perez A. 1999. Functional consensus for mammalian osmotic response elements. Am J Physiol Cell Physiol 276: C667–C673.

    Article  CAS  Google Scholar 

  • Feustel PJ, Jin Y, Kimelberg HK. 2004. Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35: 1164–1168.

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Torres-Márquez ME, Pasantes-Morales H. 2001. Evidence of two mechanisms for amino acid osmolyte release from hippocampal slices. Eur J Physiol Pflugers Arch 442: 791–800.

    Article  CAS  Google Scholar 

  • Franco R, Rodríguez R, Pasantes-Morales H. 2004a. Mechanisms of the ATP potentiation of hyposmotic taurine release in Swiss 3T3 fibroblasts. Eur J Physiol Pflugers Arch 449: 159–169.

    Article  CAS  Google Scholar 

  • Franco R, Lezama R, Ordaz B, Pasantes-Morales H. 2004b. Epidermal growth factor receptor is activated by hyposmolarity and is an early signal modulating osmolyte efflux pathways in Swiss 3T3 fibroblasts. Eur J Physiol Pflugers Arch 447: 830–839.

    Article  CAS  Google Scholar 

  • García-Perez A, Bourg MB. 1991. Renal medullary organic osmolytes. Physiol Rev 71: 1081–1115.

    Article  PubMed  Google Scholar 

  • Godart H, Ellory JC, Motais R. 1999. Regulatory volume response of erythrocytes exposed to a gradual and slow decrease in medium osmolality. Eur J Physiol Pflugers Arch 437: 776–779.

    Article  CAS  Google Scholar 

  • Han X, Budreau AM, Chesney RW. 2000. Cloning and characterization of the promoter region of the rat taurine transporter (TauT) gene. Adv Exp Med Biol 483: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Hansson E, Muyderman H, Isonova J, Allanson L, Sinclair J, et al. 2000. Astroglia and glutamate in physiology and pathology: Aspects on glutamate transport, glutamate-induced cell swelling and gap-junction communication. Neurochem Int 37: 317–329.

    Article  CAS  PubMed  Google Scholar 

  • Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S. 2000. Hepatic encephalopathy in chronic liver disease: A clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32: 1035–1038.

    Article  CAS  PubMed  Google Scholar 

  • Heilig CW, Stromski ME, Blumenfeld JB, Lee JP, Gullans SR. 1989. Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol Renal Physiol 26: F1108–F1116.

    Article  Google Scholar 

  • Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, et al. 2002. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 16: 231–233.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Lambert IH, Simonsen LO. 1988. Mechanisms in volume regulation in Ehrlich ascites tumor cells. Renal Physiol Biochem 11: 221–247.

    CAS  PubMed  Google Scholar 

  • Hubert EM, Musch MW, Goldstein L. 2000. Inhibition of volume-stimulated taurine efflux and tyrosine kinase activity in the skate red blood cell. Eur J Physiol Pflugers Arch 440: 132–139.

    Article  CAS  Google Scholar 

  • Hussy N, Deleuze C, Bres V, Moos FC. 2000. New role of taurine as an osmomediator between glial cells and neurons in the rat supraoptic nucleus. Adv Exp Med Biol 483: 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Hussy N, Bres V, Rochette M, Duvoid A, Alonso G, et al. 2001. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci 21: 7110–7116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imada K, Hosokawa Y, Terashima M, Mitani T, Tanigawa Y, et al. 2003. Inhibitory mechanism of taurine on the platelet-derived growth factor BB-mediated proliferation in aortic vascular smooth muscle cells. Adv Exp Med Biol 526: 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD. 1994. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res 19: 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewsky RA. 1990. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10: 1583–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk K. 1997. Swelling-activated organic osmolyte channels. J Membr Biol 158: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Kontro P, Marnela K-M, Oja SS. 1980. Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas. Brain Res 184: 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Lake N, Malik N. 1987. Retinal morphology in rats treated with a taurine transport antagonist. Exp Eye Res 44: 331–346.

    Article  CAS  PubMed  Google Scholar 

  • Lambert IH. 2004. Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res 29: 27–63.

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Ritter M, Völki H, Waldegger S, et al. 1998a Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306.

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Madlung J, Uhlemann AC, Risler T, Gulbins E. 1998b. Cellular taurine release triggered by stimulation of the Fas (CD95) receptor in Jurkat lymphocytes. Eur J Physiol Pflugers Arch 436: 377–383.

    Article  CAS  Google Scholar 

  • Lang F, Ritter M, Gamper N, Huber S, Fillon S. 2000. Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol Biochem 10: 417–428.

    Article  CAS  PubMed  Google Scholar 

  • Law RO. 1994. Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex. Biochim Biophys Acta 1221: 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A. 1989. Effects of microdialysis-perfusion with anisoosmotic media on extracellular amino acids in the rat hippocampus and skeletal muscle. J Neurochem 53: 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Lezama R, Ortega A, Ordaz B, Pasantes-Morales H. 2005. Hyposmolarity-induced ErbB4 phosphorylation and its influence on the non-receptor tyrosine kinase network response in cultured cerebellar granule neurons. J Neurochem 93: 1189–1198.

    Article  CAS  PubMed  Google Scholar 

  • Lien YH, Shapiro JI, Chan L. 1990. Effects of hypernatremia on organic brain osmoles. J Clin Invest 85: 1427–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr JW, Grantham JJ. 1986. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest 78: 1165–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyher ML, Mutin M, Woo SK, Kwon HM, Tappaz ML. 2004. Transcription factor tonicity-responsive enhancer-binding protein (TonEBP) which transactivates osmoprotective genes is expressed and upregulated following acute systemic hypertonicity in neurons in brain. Neuroscience 124: 89–104.

    Article  CAS  PubMed  Google Scholar 

  • Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97: 9487–9492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD. 1997. Glutamine synthetase: Glial localization in brain. Science 195: 1356–1358.

    Article  Google Scholar 

  • Massieu L, Montiel T, Robles G, Quesada O. 2004. Brain amino acids during hyponatremia in vivo: Clinical observations and experimental studies. Neurochem Res 29: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • McGivan JD, Nicholson B. 1999. Regulation of high affinity glutamate transport by amino acid deprivation and hyperosmotic stress. Am J Physiol Renal Physiol 277: F498–F500.

    Article  CAS  Google Scholar 

  • Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM. 1999. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci USA 96: 2538–2542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongin AA, Kimelberg HK. 2005. ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 288: C204–C213.

    Article  CAS  PubMed  Google Scholar 

  • Mongin AA, Reddi JM, Charniga C, Kimelberg HK. 1999. [3H]Taurine and D-[3H]aspartate release from astrocyte cultures are differently regulated by tyrosine kinases. Am J Physiol Cell Physiol 276: C1226–C1230.

    Article  CAS  Google Scholar 

  • Moorman JR, Jones L. 1998. Phospholemman: A cardiac taurine channel involved in regulation of cell volume. Adv Exp Med Biol 442: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Moran J, Hernandez-Pech X, Merchant-Larios H, Pasantes-Morales H. 2000. Release of taurine in apoptotic cerebellar granule neurons in culture. Eur J Physiol Pflugers Arch 439: 271–277.

    Article  CAS  Google Scholar 

  • Moran J, Morales-Mulia M, Pasantes-Morales H. 2001. Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim Biophys Acta 1538: 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Mori SI, Morishima S, Takasaki M, Okada Y. 2002. Impaired activity of volume-sensitive anion channel during lactacidosis-induced swelling in neuronally differentiated NI08–15 cells. Brain Res 957: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Nelson RM, Lambert DG, Green RA, Hainsworth AH. 2003. Pharmacology of ischemia-induced glutamate efflux from rat cerebral cortex in vitro. Brain Res 964: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Neuringer M, Palackal T, Kujawa M, Moretz RC, Sturman JA. 1990. Visual cortex development in rhesus monkeys deprived of dietary taurine. Prog Clin Biol Res 351: 415–422.

    CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Barros LF, Sepulveda FV. 2001. Modulation of the two pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 16: 43166–43174.

    Article  CAS  Google Scholar 

  • Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, et al. 1997. Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 68: 69–119.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa Y. 2001. Glutamate release and neuronal damage in ischemia. Life Sci 69: 369–381.

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Jayakumar AR, Rama Rao KV. 2004. Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 19: 313–329.

    Article  CAS  PubMed  Google Scholar 

  • Olson JE. 1999. Osmolyte contents of cultured astrocytes grown in hypoosmotic medium. Biochim Biophys Acta 1453: 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Olson JE, Goldfinger MD. 1990. Amino-acid content of rat cerebral astrocytes adapted to hyperosmotic medium in vitro. J Neurosci Res 27: 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Ordaz B, Tuz K, Ochoa LD, Lezama R, Peña-Segura C, et al. 2004a. Osmolytes and mechanisms involved in regulatory volume decrease under conditions of sudden or gradual osmolarity decrease. Neurochem Res 29: 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Ordaz B, Vaca L, Franco R, Pasantes-Morales H. 2004b. Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: Contribution of two types of K+ channels. Am J Physiol Cell Physiol 286: C1399–C1409.

    Article  CAS  PubMed  Google Scholar 

  • Paredes A, McManus M, Know HM, Strange K. 1992. Osmoregulation of Na+-inositol cotransporter activity and messenger RNA levels in brain glial cells. Am J Physiol Cell Physiol 263: C1282–C1288.

    Article  CAS  Google Scholar 

  • Pasantes-Morales H. 1996. Volume regulation in brain cells: Cellular and molecular mechanisms. Metab Brain Dis 11: 187–204.

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Franco R. 2002. Influence of tyrosine kinases on cell volume change-induced taurine release. Cerebellum 1: 103–109.

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Franco R. 2005. Astrocyte cellular swelling: Mechanisms and relevance to brain edema. The Role of Glia in Neurotoxicity. Aschner M, Costa L editors. Boca Raton: CRC-Press; pp. 173–190.

    Google Scholar 

  • Pasantes-Morales H, Morales Mulia S. 2000. Influence of calcium on regulatory volume decrease: Role of potassium channels. Nephron 86: 414–427.

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Schousboe A. 1988. Volume regulation in astrocytes: A role for taurine as osmoeffector. J Neurosci Res 20: 505–509.

    Article  CAS  Google Scholar 

  • Pasantes-Morales H, Schousboe A. 1997. Role of taurine in osmoregulation: Mechanisms and functional implications. Amino Acids 12: 281–293.

    Article  CAS  Google Scholar 

  • Pasantes-Morales H, Alavez S, Sanchez-Olea R, Moran J. 1993. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem Res 18: 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Perlman DF, Goldstein L. 2004. The anion exchanger as an osmolyte channel in the skate erythrocyte. Neurochem Res 29: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, O'Regan MH. 2003. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int 43: 461–467.

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D. 2000. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403: 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Saransaari P, Oja SS. 1999. Taurine release is enhanced in cell-damaging conditions in cultured cerebral cortical astrocytes. Neurochem Res 24: 1523–1529.

    Article  CAS  PubMed  Google Scholar 

  • Seki Y, Feustel PJ, Keller RW, Trammer BI, Kimelberg HK. 1999. Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokainate and an anion channel blocker. Stroke 30: 433–440.

    Article  CAS  PubMed  Google Scholar 

  • Solis JM, Herranz AS, Herreras O, Lerma J, Martín del Río R. 1998. Does taurine act as an osmoregulatory substance in the rat brain? Neurosci Lett 91: 53–58.

    Article  Google Scholar 

  • Souza MM, Boyle RT, Lieberman M. 2000. Different physiological mechanisms control isovolumetric regulation and regulatory volume decrease in chick embryo cardiomyocytes. Cell Biol Int 24: 713–721.

    Article  CAS  PubMed  Google Scholar 

  • Stover JF, Unterberg AW. 2000. Increased cerebrospinal fluid glutamate and taurine concentrations are associated with traumatic brain edema formation in rats. Brain Res 875: 51–55.

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Jackson PS. 1995. Swelling-activated organic osmolyte efflux: A new role for anion channel. Kidney Int 48: 994–1003.

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Morrison R, Heilig C, Dipietro S, Gullans M. 1991. Up-regulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Physiol 260: C780–C790.

    Article  Google Scholar 

  • Sturman JA, Gaull GE. 1975. Taurine in the brain and liver of the developing human and monkey. J Neurochem 25: 831–835.

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Moretz RM, French JH, Wisniewsky HM. 1985. Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer. J Neurosci Res 13: 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Stutzin A, Torres R, Oporto M, Pacheco P, Eguiguren AL, et al. 1999. Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am J Physiol Cell Physiol 277: C392–C402.

    Article  CAS  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, et al. 2004. Taurine inhibits apoptosis by preventing formation of the apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287: C949–C953.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka M, Preston AS, Kwon HM, Handler JS. 1994. The tonicity-sensitive element that mediates increased transcription of the betaine transporter gene in response to hypertonic stress. J Biol Chem 269: 29379–29381.

    Article  CAS  PubMed  Google Scholar 

  • Tappaz ML. 2004. Taurine biosynthetic enzymes and taurine transporter: Molecular identification and regulations. Neurochem Res 29: 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Torp R, Andine P, Hayberg H, Karagulle T, Blackstad TW, et al. 1991. Cellular and subcellular redistribution of glutamate-, glutamine- and taurine-like immunoreactivities during forebrain ischemia: A semiquantitative electron microscopic study in rat hippocampus. Neuroscience 41: 433–447.

    Article  CAS  PubMed  Google Scholar 

  • Tuz K, Ordaz B, Vaca L, Quesada O, Pasantes-Morales H. 2001. Isovolumetric regulation mechanisms in cultured cerebellar granule neurons. J Neurochem 79: 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Tuz K, Peña-Segura C, Franco R, Pasantes-Morales H. 2004. Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. Eur J Neurosci 19: 916–924.

    Article  PubMed  Google Scholar 

  • Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F, et al. 1992. Molecular cloning of the cDNA for an MDCK cell Na+ and Cl−-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci USA 89: 8230–8234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Wijk T, Tomassen SF, de Jonge HR, Tilly BC. 2000. Signalling mechanisms involved in volume regulation of intestinal epithelial cells. Cell Physiol Biochem 10: 289–296.

    Article  PubMed  Google Scholar 

  • Van Driessche W, De Smet P, Li J, Allen S, Zizi M, et al. 1997. Isovolumetric regulation in a distal nephron cell line (A6). Am J Physiol Cell Physiol 272: C1890–C1898.

    Article  CAS  Google Scholar 

  • Verbalis JG, Gullans SR. 1991. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res 567: 274–282.

    Article  CAS  PubMed  Google Scholar 

  • Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, et al. 2002. Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells. J Invest Med 50: 443–451.

    Article  CAS  Google Scholar 

  • Voets T, Szucs G, Droogmans G, Nilius B. 1995. Blockers of volume-activated Cl− currents inhibit endothelial cell proliferation. Eur J Physiol Pflugers Arch 431: 132–134.

    Article  CAS  Google Scholar 

  • Walz W. 2000. Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36: 291.

    Article  CAS  PubMed  Google Scholar 

  • Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. 2003. Cell volume regulation: Osmolytes, osmolyte transport and signal transduction. Rev Physiol Biochem Pharmacol 148: 1–80.

    Article  CAS  PubMed  Google Scholar 

  • Wondergem R, Gong W, Monen SH, Dooley SN, Gonce JL, et al. 2001. Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J Physiol 532: 661–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZieliÅ„ska M, Hilgier W, Law RO, Gorynski P, Albrecht J. 1999. Effects of ammonia in vitro on endogenous taurine efflux and cell volume in rat cerebrocortical minislices: Influence of inhibitors of volume-sensitive amino acid transport. Neuroscience 91: 631–638.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author's laboratory has been supported by grants No. 46465 from CONACYT and IN209507 from DGAPA, UNAM.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pasantes-Morales, H. (2007). 10 Amino Acids and Brain Volume Regulation: Contribution and Mechanisms. In: Lajtha, A., Oja, S.S., Schousboe, A., Saransaari, P. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30373-4_10

Download citation

Publish with us

Policies and ethics