Skip to main content

Metals

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Whereas the fundamental properties of all metallic elements are covered systematically and comprehensively in Chap. 2.1, this section chapter treats those metals that are applied as base and alloying elements of metallic materials. According to common usage, the section is subdivided into treatments of metallic materials based on a single elements (Mg, Al, Ti, Zr, Fe, Co, Ni, Cu, Pb), and treatments of groups of metals with common dominating features (refractory metals, noble metals). The term metal is used indiscriminately for pure metals and for multicomponent metallic materials, i.e., alloys.

The properties of metallic materials depend sensitively not only on their chemical composition and on the electronic and crystal structure of the phases formed, but also to a large degree on their microstructure including the kind and distribution of lattice defects. The phase composition and microstructure of metallic materials are strongly dependent, in turn, on the thermal and mechanical treatments, which are applied under well-controlled conditions to achieve the desired properties. Accordingly, the production of metallic semifinished products and final parts on one hand, and the properties in the final state on the other hand, are usually intricately linked. This also applies to metallic materials treated in other chapters (Chap. 4.2 on superconductors and Chap. 4.3 on magnetic materials), as well as to the majority of other inorganic and organic materials.

According to the complexity of the interrelations between fundamental (intrinsic) and microstructure-dependent (extrinsic) properties of metallic materials, this section provides a substantial amount of explanatory text. By the same token, the data given are mostly typical examples indicating characteristic ranges of properties achievable rather than providing complete listings. More comprehensive databases are indicated by way of reference.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AISI:

American Iron and Steel Institute

ASTM:

American Society for Testing and Materials

DOS:

density of states

EB:

electron-beam melting

HB:

Brinell hardness number

HPDC:

high-pressure die casting

HV:

Vicker's Hardness

IACS:

International Annealed Copper Standard

ISO:

International Organization for Standardization

TMT:

thermomechanical treatment

TTT:

time-temperature-transformation

References

  1. E. G. Emley: Principles of Magnesium Technology (Pergamon, New York 1966)

    Google Scholar 

  2. IMA: Annual Report (Int. Magnesium Association, Washington, DC 2001)

    Google Scholar 

  3. M. M. Avedesian, H. Baker: Magnesium and Magnesium Alloys, ASM Specialty Handbook (ASM, Metals Park 1999)

    Google Scholar 

  4. I. J. Polmear: Light Metals, Metallurgy of the Light Metals (Wiley, New York 1995)

    Google Scholar 

  5. G. Neite: Structure and properties of nonferrous alloys. In: Materials Science and Technologie, Vol. 8, ed. by K. H. Matucha (Verlag Chemie, Weinheim 1996)

    Google Scholar 

  6. C. S. Roberts: Magnesium and Its Alloys (Wiley, Chichester 1960)

    Google Scholar 

  7. C. Kammer: Magnesium Taschenbuch (Aluminium Verlag, Düsseldorf 2000)

    Google Scholar 

  8. G. L. Song, A. Atrens: Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999)

    Google Scholar 

  9. C. Kammer: Aluminium Handbook 1, Fundamentals and Materials (Aluminium Verlag, Düsseldorf 2002)

    Google Scholar 

  10. J. R. Davis (Ed.): Aluminium and Aluminium Alloys, ASM Specialty Handbook (ASM, Metals Park 1993)

    Google Scholar 

  11. H. W. L. Phillips: Equilibrium Diagrams of Aluminium Alloy System (The Aluminium Development Association, London 1961)

    Google Scholar 

  12. J. Thonstad, P. Fellner, G. M. Haarberg, J. Hives, H. Kvande, A. Sterten: Aluminium Electrolysis - Fundamentals of the Hall-H'eroult Process, 3rd edn. (Aluminium Verlag, Düsseldorf 2001)

    Google Scholar 

  13. International Aluminium Institute (AIA, London 2003), www.world-aluminium.org and www.world-aluminum.org

    Google Scholar 

  14. E. Nachtigall, H. Landerl: The treatment of the conductor alloy E-AlMgSi, Aluminium Ranshofen Mitteilungen 2, 40–43 (in German) (1955)

    Google Scholar 

  15. E. Nachtigall, G. Lang: Electrical conductivity of aluminium castings, Mitt. Verein. Metallwerke Ranshofen-Berndorf , 16–19 (in German) (1965)

    Google Scholar 

  16. L. F. Mondolfo: Aluminium Alloys - Structure and Properties (Butterworths, London 1976)

    Google Scholar 

  17. C. Kammer: Thermomechanical treatment of Al strip casting. Ph.D. Thesis (TU Bergakademie Freiberg, Freiberg 1989) (in German)

    Google Scholar 

  18. E. Schürmann, I. K. Geissler: Solid-state phase equilibria in the Al and Mg rich areas of the Al-Mg-Li system, Giessereiforschung 32, 163–174 (in German) (1981)

    Google Scholar 

  19. A. Dons: AlFeSi-Particles in industrially cast aluminium alloys, Z. Metallkunde 76, 609–612 (1985)

    Google Scholar 

  20. A. Cziraki, B. Fogarassy, I. Szábo: Structure of high purity Al-Fe-Si-cast with different cooling rates, Cryst. Res. Technol. Berlin 20, 279–281 (1985)

    Google Scholar 

  21. H. Westengen: Structure inhomogenities in direct chill cast sheet ingots of commercial pure aluminium, Z. Metallkunde 73, 360–368 (1982)

    Google Scholar 

  22. H. P. Godard, W. B. Jepson, M. R. Bothwell, R. L. Kane: The Corrosion of Light Metals (Wiley, New York 1967)

    Google Scholar 

  23. K. R. Van Horn: Aluminium. Bd. 1, Properties, Physical Metallurgy and Phase Diagrams (ASM, Metals Park 1967)

    Google Scholar 

  24. D. Altenpohl: Aluminium and Aluminium-Alloys (Springer, Berlin, Heidelberg 1965 (in German))

    Google Scholar 

  25. U. Hielscher, H. Arbenz, H. Diekmann: Properties of AlSi-casting alloys with low iron content, Giesserei 53, 125–133 (in German) (1966)

    Google Scholar 

  26. U. Hielscher: Ductile aluminium-silicon casting alloys for safety components in cars, Schweiz. Alum. Rundsch. 29, 13–15 (in German) (1979)

    Google Scholar 

  27. U. Hielscher, R. Klos: A new low iron diecasting alloy, Aluminium 71, 676–685 (in German) (1995)

    Google Scholar 

  28. W. Jung-König, U. Zwicker: Behaviour of light metal alloys on heating, Aluminium 34, 337–345 (in German) (1958)

    Google Scholar 

  29. H. Vosskühler: Aluminium-Gusslegierungen hoher Dauerstandfestigkeit mit Magnesium und Silicium, Aluminium 31, 219–222 (1955)

    Google Scholar 

  30. K. Wellinger, E. Keil, G. Maier: Strength of aluminium and its alloys up to 300 °C, Aluminium 34, 458–463 (in German) (1958)

    Google Scholar 

  31. K. Wellinger, E. Keil et al.: On the mechanical properties of aluminium and aluminium alloys at elevated temperatures, Aluminium 39, 372–377 (in German) (1963)

    Google Scholar 

  32. E. Richter, E. Hanitzsch: Elastic modulus and other physical properties of aluminium-base materials. Part 1., Aluminium 70, 570–574 (in German) (1994)

    Google Scholar 

  33. D. Lenz, G. M. Renouard: Definition of cold rolled tempers by means of flow curves and energy of deformation, Aluminium 46, 694–699 (in German) (1970)

    Google Scholar 

  34. A. Odok, G. Thym: The technical and economic advantages of continuous strip casting, Aluminium Engl. Suppl. 50, E9–E11 (English transl.) (1974)

    Google Scholar 

  35. C. Kammer, M. Krumnacker et al.: Thermomechanical treatment of continuously cast and rolled Al99.5 alloy, Neue Hütte 35, 418–421 (in German) (1990)

    Google Scholar 

  36. C. Kammer, M. Krumnacker et al.: Comparison of the strengthening effects in strip cast Al99.5, AlMn1 and AlMn1Fe1, Metall 45, 135–138 (in German) (1991)

    Google Scholar 

  37. J. Althoff: Properties and uses of a new heat-resistant Al-Mn alloy, Metall 31, 263–267 (in German) (1977)

    Google Scholar 

  38. J. Althoff: Examples of the application-orientated development of high-strength aluminium manganese alloys, Aluminium Engl. Suppl. 56, E37–E39 (English transl.) (1982)

    Google Scholar 

  39. P. Brenner, H. Kostron: Treatment of AlMgSi-alloys, Z. Metallkunde 31, 89–97 (1939)

    Google Scholar 

  40. I. Novikov: Theory of Heat Treatment of Metals, 1st edn. (Metalurgija, Moscow 1978)

    Google Scholar 

  41. Y. Takeuchi: Effect of plastic deformation on the natural ageing of AlCuMg1, AlCuMg2 and AlZnMgCu0.5, Aluminium 47, 665–670 (in German) (1971)

    Google Scholar 

  42. K. Lücke, P. Stüwe: On the theory of impurity cotrolled grain boundary motion, Acta Met. 19, 1067–1099 (1971)

    Google Scholar 

  43. H. Warlimont: Effect of segregation and precipitation on the recrystallisation and grain size of non-ferrous metals, Freiberg. Forschungsh. B 200, 31–57 (in German) (1979)

    Google Scholar 

  44. D. B. Goel, P. Furrer, H. Warlimont: Precipitation behaviour of AlMnCuFe-alloys, Aluminium 50, 511–516 (in German) (1974)

    Google Scholar 

  45. E. Nes, S. Slevolden: Casting and annealing structures in strip cast alloy, Aluminium 55, 319–324 (1979)

    Google Scholar 

  46. E. Nes, J. D. Embury: The influence of a fine particle dispersion on the recrystallisation behaviour of a two phase aluminium alloy, Z. Metallkunde 66, 589–593 (1975)

    Google Scholar 

  47. E. Nes, S. Slevolden: The concept of a grain size diagramm in the analysis of the recrystallisation behaviour of AlMn-alloys, Aluminium 52, 560–563 (1976)

    Google Scholar 

  48. E. Nes: The effect of a fine particle dispersion on heterogeneous recrystallisation, Acta Met. 24, 391–398 (1976)

    Google Scholar 

  49. C. Kammer, M. Krumnacker et al.: Thermomechanical treatment of strip cast AlMn1Fe1 alloy, Metall 43, 1162–1168 (in German) (1993)

    Google Scholar 

  50. W. Huppatz: The fundamentals of corrosion protection of aluminium alloys used as structural materials. Part 1, Metall 49, 505–509 (in German) (1995)

    Google Scholar 

  51. K. H. Matucha: Structure and properties of nonferrous alloys. In: Materials Science and Technology, Vol. 8, ed. by R. W. Cahn, P. Haasen, E. J. Kramer (VCH, Weinheim 1996)

    Google Scholar 

  52. J. R. Davis (Ed.): Heat-Resistant Materials, ASM Specialty Handbook (ASM, Metals Park 1997)

    Google Scholar 

  53. H. Sibum, G. Volker, O. Roidl, H. U. Wolf: Titanium and titanium alloys. In: Ullmann's Encyclopedia of Industrial Chemistry, Vol. A27 (VCH, Weinheim 1996) pp. 95–122

    Google Scholar 

  54. J. L. Murray: Phase Diagrams of Binary Titanium Alloys (ASM, Metals Park 1990)

    Google Scholar 

  55. D. F. Williams: Medical and dental materials. In: Materials Science and Technology, Vol. 14, ed. by R. W. Cahn, P. Haasen, E. J. Kramer (VCH, Weinheim 1992)

    Google Scholar 

  56. S. Steiner: Properties and Selection: Irons, Steels and High Performance Alloys, Metals Handbook, Vol. 1, 8th edn. (ASM, Metals Park 1961)

    Google Scholar 

  57. G. Sauthoff: Intermetallic Materials, Landolt–Börnstein, New Series targetVIII/2http://www.springerlink.com/link.asp?id=55jq02lut5a9, ed. by P. Beiss, R. Ruthardt, H. Warlimont (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  58. T. K. Roy, R. Balasubramanian, A. Ghosh: Metall. Mater. Trans. Trans. A 27, 3993–4003 (1996)

    ADS  Google Scholar 

  59. Y. W. Kim: JOM-J. Min. Met. Mater. Soc. 46 (1994)

    Google Scholar 

  60. N. S. Stoloff, V. K. Sikka: Pysical Metallurgy and Processing of Intermetallic Compounds, 1st edn. (Chapman & Hall, London 1996)

    Google Scholar 

  61. Y. W. Kim, R. Wagner, M. Yamaguchi: Gamma titanium aluminides, Proc. ISGTA'95 (TMS, Warrendale 1995)

    Google Scholar 

  62. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, M. V. Nanthal: Structural intermetallics, Proc. First Intl. Symp. (TMS, Warrendale 1993)

    Google Scholar 

  63. K. Otsuka, C. M. Wayman (Eds.): Shape Memory Materials (Cambridge University Press, Cambridge 1998)

    Google Scholar 

  64. K. Otsuka, T. Kakeshita (Guest Eds.): Science and technology of shape-memory alloys: New developments, Mater. Res. Soc. Bull. 27, 91–129 (2002)

    Google Scholar 

  65. H. Horikawa: , Proc. 1st Europ. Conf. on Shape Memory and Superelastic Technologies, Antwerp 1999) 256

    Google Scholar 

  66. A. E. Pelton, S. M. Russell, J. DiCello: The physical metallurgy of nitinol for medical applications, JOM-J. Min. Met. Mater. Soc. 55, 33–37 (2003)

    Google Scholar 

  67. W. Chang: Zirconium products: Technical data sheet (Allegheny Technologies Inc. Pittsburgh, PA), www.alleghenytechnologies.com/wahchang

    Google Scholar 

  68. C. Lemaignan, A. T. Motta: Zirconium alloys in nuclear applications. In: Materials Science and Technology, Vol. 10B/II, ed. by B. R. T. Frost (VCH, Weinheim 1994)

    Google Scholar 

  69. A. Inoue, T. Zhang, T. Masumoto: Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method, JIM 31, 425 (1990)

    Google Scholar 

  70. A. Peker, W. L. Johnson: Appl. Phys. Lett. 63, 2342 (1993)

    ADS  Google Scholar 

  71. W. L. Johnson: Fundamental aspects of bulk metallic glass formation in multicomponent alloys, Mater. Sci. Forum 225–227, 35 (1996)

    Article  Google Scholar 

  72. A. Inoue: Bulk Amorphous Alloys (Trans Tech, Uetikon-Zurich 1998)

    Google Scholar 

  73. A. Takeuchi, A. Inoue: Mater. Sci. Eng. A 304-306, 446 (2001)

    Google Scholar 

  74. T. Wada, T. Zhang, A. Inoue: Mater. Trans. 43, 2843 (2002)

    Google Scholar 

  75. C. C. Hays, J. Schroers, U. Geyer, S. Bossuyt, N. Stein, W. L. Johnson: Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses. In: Metastable, Mechanically Alloyed and Nanocrystalline Materials, ed. by H. Eckert, H. Schlörb, L. Schultz (Trans Tech, Uetikon-Zurich 1995)

    Google Scholar 

  76. G. He, W. Löser, J. Eckert, L. Schultz: Mater. Sci. Eng. A 352, 179 (2003)

    Google Scholar 

  77. J. E. Truman: Stainless steels. In: Constitution and Properties of Steels, Materials Science and Technology, Vol. 7, ed. by F. B. Pickerling (VCH, Weinheim 1992) p. 527

    Google Scholar 

  78. W. Dahl (Ed.): Eigenschaften und Anwendungen von Stählen (Institut für Eisenhüttenkunde IEHK, RWTH Aachen, Aachen 1993) p. 727 in German

    Google Scholar 

  79. J. R. Davis (Ed.): Stainless Steels, ASM Speciality Handbook (ASM, Metals Park 1994)

    Google Scholar 

  80. J. R. Davis (Ed.): Carbon and Alloy Steels, ASM Speciality Handbook (ASM, Metals Park 1996)

    Google Scholar 

  81. J. E. Bringas (Ed.): Handbook of Comparative World Steel Standards (ASTM, West Conshohocken 2001)

    Google Scholar 

  82. B. Predel (Ed.): Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Landolt–Börnstein, New Series targetIV/5http://www.springerlink.com/link.asp?id=fgpck6dbkxnu (Springer, Berlin, Heidelberg 1991–1998)

    Google Scholar 

  83. J. L. Lee, H. K. D. H. Bhadeshia: Mater. Sci. Eng. A 171, 223–230 (1993)

    Google Scholar 

  84. G. Vander Voort: Atlas of Time Temperature Diagrams, Vol. 1,2 (ASM, Materials Park 1991)

    Google Scholar 

  85. H. Schneider: Investment casting of high-hot strength 12% chrome steel, Foundry Trade J. 108, 562 (1960)

    Google Scholar 

  86. K. Yagi, G. Merkling, H. Irie, H. Warlimont (Eds.): Creep Properties of Heat Resistant Steels and Superalloys, Landolt–Börnstein, New Series targetVIIIhttp://www.springerlink.com/openurl.asp?genre=journal&issn% =1619-4810 (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  87. VDEh (Ed.): Stahl-Eisen-Werkstoffblatt (SEW) no. 470, Feb. 1976 (Verlag Stahleisen GmbH, Düsseldorf 1976)

    Google Scholar 

  88. J. R. Davis (Ed.): Tool Materials, ASM Speciality Handbook (ASM, Metals Park 1995)

    Google Scholar 

  89. J. R. Davis (Ed.): Cast Irons, ASM Speciality Handbook (ASM, Metals Park 1996)

    Google Scholar 

  90. W. Betteridge: Cobalt and Its Alloys (Ellis Horwood, New York 1982)

    Google Scholar 

  91. J. R. Davis (Ed.): Nickel, Cobalt and Their Alloys, ASM Specialty Handbook (The Materials Information Society, Materials Park 2000)

    Google Scholar 

  92. W. Gudat, O. Rader (Eds.): Electronic Structure of Solids. Photoemission Spectra and Related Data. Magnetic Transition Metals, Landolt–Börnstein, New Series targetIII/23http://www.springerlink.com/link.asp?id=vxy0vjw20bde (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  93. B. Predel: Phase Equilibria, Landolt–Börnstein, New Series targetIV/5http://www.springerlink.com/link.asp?id=fgpck6dbkxnu (Springer, Berlin, Heidelberg 1991–1998)

    Google Scholar 

  94. J. R. Davis (Ed.): Tool Materials, ASM Specialty Handbook (The Materials Information Society, Materials Park 1995)

    Google Scholar 

  95. P. Beiss, R. Ruthardt, H. Warlimont (Eds.): Powder Metallurgy Data, Landolt–Börnstein, New Series targetVIII/2http://www.springerlink.com/link.asp?id=55jq02lut5a9 (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  96. J. R. Davis (Ed.): Nickel, Cobalt and Their Alloys, ASM Specialty Handbook (ASM International, Materials Park 2000)

    Google Scholar 

  97. J. R. Davis (Ed.): Heat-Resistant Materials, ASM Specialty Handbook (ASM International, Materials Park 1997)

    Google Scholar 

  98. J. C. Fuggle, U. Hillebrecht, R. Zeller, Z. Zolonierek, P. Bennet, C. Freiburg: Phys. Rev. B 27, 719 (1982)

    Google Scholar 

  99. W. Gudat, O. Rader (Eds.): Electronic Structure of Solids. Photoemission Spectra and Related Data. Magnetic Transition Metals, Landolt–Börnstein, New Series targetIII/23http://www.springerlink.com/link.asp?id=vxy0vjw20bde (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  100. B. Predel: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Landolt–Börnstein, New Series targetIV/5http://www.springerlink.com/link.asp?id=fgpck6dbkxnu (Springer, Berlin, Heidelberg 1991–1998)

    Google Scholar 

  101. K. Yagi, G. Merckling, H. Irie, H. Warlimont (Eds.): Creep Properties of Heat Resistant Steels and Superalloys, Landolt–Börnstein, New Series targetVIIIhttp://www.springerlink.com/openurl.asp?genre=journal&issn% =1619-4810 (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  102. G. Joseph, K. J. A. Kundig: Copper, Its Trade, Manufacture, Use, and Environmental Status (ASM International, Materials Park 1998)

    Google Scholar 

  103. Wieland-Werke AG: Wieland-Kupferwerkstoffe (Ulm, Germany 1999)

    Google Scholar 

  104. J. R. Davis (Ed.): Copper and Copper Alloys, ASM Specialty Handbook (ASM, Metals Park 2001)

    Google Scholar 

  105. H. Warlimont, L. Delay: Martensitic Transformations in Copper-, Silver-, and Gold-Based Alloys (Pergamon, Oxford 1974)

    Google Scholar 

  106. B. Predel: Cr-Cs–Cu-Zr, Landolt–Börnstein, New Series targetIV/5http://www.springerlink.com/link.asp?id=fgpck6dbkxnu (Springer, Berlin, Heidelberg 1991–1998)

    Google Scholar 

  107. J. B. Conway, B. N. Flagella: Creep Rupture Data for the Refractory Metals to High Temperatures (Gordon Breach, New York 1971)

    Google Scholar 

  108. R. Kieffer, G. Jangg, P. Ettmayer: Sondermetalle (Springer, Vienna 1971) in German

    Google Scholar 

  109. American Society for Metals: Properties and Selection: Nonferrous Alloys and Pure Metals, Metals Handbook, Vol. 2, 9th edn. (American Society for Metals, Metals Park 1979)

    Google Scholar 

  110. W. C. Hagel, J. A. Shields, S. M. Tuominen: Processing and production of molybdenum and tungsten alloys, Proc. Symp. on Refractory Technology for Space Nuclear Power Applications, CONF-8308130 (Oak Ridge National Laboratory 1983) 98

    Google Scholar 

  111. K. H. Miska, M. Semchyshen, E. P. Whelan (Eds.): Physical Metallurgy and Technology of Molybdenum and its Alloys (AMAX, Michigan 1985)

    Google Scholar 

  112. J. Wadsworth, T. G. Nieh, J. J. Stephens: Recent advances in aerospace refractory metal alloys, Inter. Mater. Rev. 33(3), 131 (1988)

    Google Scholar 

  113. E. Pink, I. Gaal: Mechanical properties and deformation mechanisms of non-sag tungsten wires. In: The Metallury of Doped, Non-Sag Tungsten, ed. by E. Pink, L. Bartha (Elsevier, New York 1989) p. 209

    Google Scholar 

  114. T. G. Nieh, J. Wadsworth: Recent advances and developments in refractory alloys, Mat. Res. Soc. Symp. Proc. 322, 315 (1994), ISBN: 1-55899-221-9

    Google Scholar 

  115. E. Pink, R. Eck: Refractory metals and their alloys. In: Materials Science and Technology – A Comprehensive Treatment, Vol. 8, ed. by R. W. Cahn, P. Haasen, E. J. Kramer (VCH Verlag, Weinheim 1997) p. 589

    Google Scholar 

  116. E. Lassner, W. D. Schubert: Tungsten: Properties, chemistry, technology of the element, alloys, and chemical compounds (Kluwer/Plenum, New York 1999)

    Google Scholar 

  117. G. Leichtfried: Handbook of Extractive Metallurgy (Wiley-VCH, Weinheim 1997) p. 1371

    Google Scholar 

  118. G. Leichtfried: Powder Metallurgy Data, Landolt–Börnstein, New Series targetVIII/2Ahttp://www.springerlink.com/link.asp?id=55jq02lut5a9 (Springer, Berlin, Heidelberg, New York 2002)

    Google Scholar 

  119. G. Leichtfried: Molybdenum lanthanum oxide: Special material properties by dispersoid refining during deformation. In: Advances in Powder Metallurgy and Particulate Materials, Vol. 9 (MPIF, Princeton 1992) p. 123

    Google Scholar 

  120. D. M. Moon, R. C. Koo: Mechanism and kinetics of bubble formation in doped W, Metall. Trans. 2, 2125 (1971)

    Google Scholar 

  121. H. G. Sell, D. F. Stein, R. Stickler, A. Joshi, E. Berkey: The identification of bubble forming impurities in doped tungsten, J. Inst. Met. 100, 275 (1972)

    Google Scholar 

  122. P. Makarov, K. Povarova: Principles of the alloying of tungsten and development of the manufacturing technology for the tungsten alloys, Proc. 15th Plansee Seminar, Vol. 3 (Plansee AG, Reutte 2001) p. 464

    Google Scholar 

  123. G. A. Geach, J. E. Hughes: The alloy of rhenium with molybdenum or with tungsten and having good high temperature properties, Proc. 2nd Plansee Seminar (Plansee AG, Reutte 1955) p. 245

    Google Scholar 

  124. R. I. Jaffee, C. T. Sims, J. J. Harwood: The effect of rhenium on the fabricability and ductility of molybdenum and tungsten, Proc. 3rd Plansee Seminar (Plansee AG, Reutte 1958) p. 380

    Google Scholar 

  125. J. G. Booth, R. I. Jaffee, E. I. Salkovitz: The mechanisms of the rhenium-alloying effect in group VI-A metals, Proc. 5th Plansee Seminar (Plansee AG, Reutte 1964) p. 547

    Google Scholar 

  126. Plansee Aktiengesellschaft: Material Data Base, Reutte (2000)

    Google Scholar 

  127. H. Borchers, E. Schmidt (Eds.): Stoffwerte und Verhalten von metallischen Werkstoffen, Landolt–Börnstein IV/2b, 6th edn. (Springer, Berlin, Heidelberg 1964)

    Google Scholar 

  128. T. E. Tietz, J. W. Wilson: Behavior and Properties of Refractory Metals (Stanford Univ. Press, Stanford 1965) p. 325

    Google Scholar 

  129. Plansee Aktiengesellschaft: Tungsten Brochure, Reutte (1997)

    Google Scholar 

  130. C. Cagran, C. Brunner, A. Seifter, G. Pottlacher: Liquid-phase behaviour of normal spectral emissivity at 684.5 nm of some selected metals, High Temp.-High Press. 34, 669 (2002)

    Google Scholar 

  131. Dechema-Werkstoff-Tabelle: Oxidierende Heißgase (Dechema, Frankfurt 1981)

    Google Scholar 

  132. A. Schintlmeister, H.-P. Martinz, P. Wilhartitz, F. P. Netzer: Low-temperature oxidation of industrial molybdenum surfaces, Powder Metallurgy World Congress & Exhibition, Granada 1998 (EPMA 1998) 526

    Google Scholar 

  133. G. Leichtfried: Powder metallurgical components for light sources, Habilitation Thesis (Montanuniversität, Leoben 2003)

    Google Scholar 

  134. E. Fromm, E. Gebhardt: Gase und Kohlenstoff in Metallen (Springer, Berlin, Heidelberg 1976) p. 747 in German

    Google Scholar 

  135. R. Speiser, G. R. St. Pierre: Proc. AGARD (Advisory Group for Aerospace Research and Development) Conf. on refractory metals, Oslo 1963

    Google Scholar 

  136. J. Disam, H.-P. Martinz, M. Sulik: European Patent Specification EP798402

    Google Scholar 

  137. C. A. Krier: Coatings for the Protection of Refractory Metals from Oxidation, Defense Metals Information Center Report 162 (Battelle Memorial Institute, Columbus 1961)

    Google Scholar 

  138. W. Knabl: Oxidationsschutz von Refraktärmetallen auf der Basis von Silizid- und Aluminidschichten. Ph.D. Thesis (Montanuniversität, Leoben 1995) in German

    Google Scholar 

  139. H.-P. Martinz, M. Sulik: Oxidation protection of refractory metals in the glass industry, Glastechnische Berichte, Glas Sci. Technol. 73(C2) (2000)

    Google Scholar 

  140. C. Stickler: Mikroplastizität und zyklisches Spannungs-Dehnungsverhalten von Ta und Mo bei Temperaturen unter 0.2 T m . Ph.D. Thesis (University of Vienna, Vienna 1998) in German

    Google Scholar 

  141. F. Benesovsky: Pulvermetallurgie und Sinterwerkstoffe (Plansee AG, Reutte 1982) p. 95, in German

    Google Scholar 

  142. E. Pink, H. Kärle: Zum Rekristallisationsverhalten von Sintertantal, Planseeberichte für Pulvermetallurgie 16, 105 (1968) in German

    Google Scholar 

  143. G. Leichtfried, G. Thurner, R. Weirather: Molybdenum alloys for glass-to-metal seals, Proc. 14th Plansee Seminar, Vol. 4 (Plansee AG, Reutte 1997) p. 26

    Google Scholar 

  144. H. H. R. Jansen: The recrystallization texture of non-sag wire. In: The Metallurgy of Doped, Non-Sag Tungsten, ed. by E. Pink, L. Bartha (Elsevier, New York 1989) p. 203

    Google Scholar 

  145. D. B. Snow: The recrystallization of non-sag tungsten wire. In: The Metallurgy of Doped, Non-Sag Tungsten (Elsevier, New York 1989) p. 189

    Google Scholar 

  146. V. I. Trefilov, Y. V. Milman: Physical basis of thermomechanical treatment of refractory metals, Proc. 12nd Plansee Seminar, Vol. 1 (Plansee AG ,Reutte 1989) p. 107

    Google Scholar 

  147. E. Parteder, W. Knabl, R. Stickler, G. Leichtfried: Bruchzähigkeit und Porenverteilung von Molybdän Stabmaterial in Abhängigkeit des Reckgrades und des Rekristallisationsgrades, Proc. 14th Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1997) p. 984, in German

    Google Scholar 

  148. E. Parteder, H. Riedel, R. Kopp: Densification of sintered molybdenum during hot upsetting: Experiments and modeling, Mat. Sci. Eng. A 264, 17 (1999)

    Google Scholar 

  149. E. Parteder: Ein Modell zur Simulation von Umformprozessen pulvermetallurgisch hergestellter hochschmelzender Metalle. Ph.D. Thesis (RWTH, Aachen 2000) in German

    Google Scholar 

  150. E. Parteder, H. Riedel: Simulating of hot forming processes of refractory metals using porous metal plasticicty models, Proc. 15th Plansee Seminar, Vol. 3 (Plansee AG, Reutte 2001) p. 60

    Google Scholar 

  151. B. P. Bewlay, C. L. Briant: Discussion of “Evidence for the Existence of Potassium Bubbles in AKS-Doped Tungsten Wire” and Reply, Met. Trans. A 22A, 2153 (1991)

    Google Scholar 

  152. C. L. Briant: The effect of thermomechanical processing on the microstructure of tungsten rod, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 321

    Google Scholar 

  153. J. L. Walter, C. L. Briant: Tungsten wire for incandescent lamps, J. Mat. Res. 5, 2004 (1990)

    ADS  Google Scholar 

  154. G. L. Krasko: Effect of impurities on the electronic structure of grain boundaries and intergranular cohesion in tungsten, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 27

    Google Scholar 

  155. A. Kumar, B. L. Eyre: Grain boundary segregation and intergranular fracture in molybdenum, Proc. R. Soc. London A 370, 431 (1980)

    Article  ADS  Google Scholar 

  156. St. M. Cardonne: Tantalum and its alloys, Advanced Mat. & Processes 9, 16 (1992)

    Google Scholar 

  157. P. Wilhartitz, G. Leichtfried, H. P. Martinz, H. Hutter, A. Virag, M. Grasserbauer: Applications of 3D-SIMS for the development of refractory metal products, Proc. 2nd Europ. Conf. on Advanced Materials and Processes, ed. by T. W. Clyne, P. J. Withers, London 1992) 323

    Google Scholar 

  158. J. Femböck, R. Stickler, A. Vinckier: The effect of strain rate and heating rate on the tensile behavior of W and W-ThO2 between room temperature and 1400 °C, Proc. 11st Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1985) p. 361

    Google Scholar 

  159. D. L. Chen, B. Weiss, R. Stickler, M. Witwer, G. Leichtfried, H. Hödl: Fracture toughness of high melting point materials, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 621

    Google Scholar 

  160. E. S. Meiren, D. A. Thomas: Effect of grain boundaries on the bending ductility of tungsten, Metall. Trans. 233, 937 (1965)

    Google Scholar 

  161. P. F. Browning, C. L. Briant, B. A. Knudsen: Dependence of material properties on processing history during wire drawing of commercially doped tungsten lamp wire, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 336

    Google Scholar 

  162. P. K. Wright: High temperature creep behavior of doped tungsten wire, Metall. Trans. 9, 955 (July 1978)

    Google Scholar 

  163. J. Neges, B. Ortner, G. Leichtfried, H. P. Stüwe: On the 45° embrittlement of tungsten sheets, Mat. Sci. Eng. A 196, 129 (1995)

    Google Scholar 

  164. Y. V. Milman: unpublished results

    Google Scholar 

  165. A. Seeger: The temperature dependence of the critical shear stress and of work hardening of metal crystals, Philos. Mag. 7, 771 (1954)

    Google Scholar 

  166. J. W. Christian: Plastic deformation of bcc metals, Proc. International Conference on the Strength of Materials (ICSMA-2), Asilomar (ASTM, Philadelphia 1970) 31

    Google Scholar 

  167. H. Mughrabi: unpublished results

    Google Scholar 

  168. H. Ullmaier: Design properties of tantalum or everything you always wanted to know about tantalum but were afraid to ask, ESS (European Spallation Source) report ISSN 1433-559X, 03-131-T (2003)

    Google Scholar 

  169. W. Rinnerthaler, F. Benesovsky: Untersuchungen über das Mikrodehnungsverhalten von Molybdän, Planseeberichte für Pulvermetallurgie 21, 253 (1973) in German

    Google Scholar 

  170. C. Stickler, D. L. Chen, B. Weiss, R. Stickler: Time dependent microplastic deformation of Mo and Ta at low temperatures, Proc. 14th Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1997) p. 1004

    Google Scholar 

  171. K. J. Bowman, R. Gibala: Cyclic deformation of W single crystals, Scripta Met. 20, 1451 (1986)

    Google Scholar 

  172. M. A. Meyers, Y.-J. Chen, F. D. S. Marquis, J. B. Isaacs: High strain rate behavior of Ta, The Univ. of Cal., Inst. for Mechanics and Materials, Report 94-25 (1994)

    Google Scholar 

  173. C. C. Wojcik: Thermomechanical processing and properties of niobium alloys, Proc. of the Internat. Symposium Niobium 2001 (Niobium 2001 Limited, Orlando 2001) 163

    Google Scholar 

  174. H. Mughrabi, K. Herz, X. Stark: Cyclic deformation and fatigue behavior of α-Fe mono- and polycrystals, Int. J. Fracture 17, 193 (1981)

    Google Scholar 

  175. M. Werner: Temperature and strain rate dependence of the flow stress of Ta single crystals in cyclic deformation, Revue de Physique Appliquee 23, 672 (1988)

    Google Scholar 

  176. J. Femböck, K. Pfaffinger, B. Weiss, R. Stickler: Verhalten von Mo-Werkstoffen unter zyklischer Beanspruchung, Proc. 10th Plansee Seminar, Vol. 2 (Plansee AG, Reutte 1981) p. 27

    Google Scholar 

  177. K. Pfaffinger, J. Femböck: Versuchsplanung und statistische Auswertung von Schwingfestigkeitsdaten von Mo-Werkstoffen, Proc. 10th Plansee Seminar, Vol. 2 (Plansee AG, Reutte 1981) p. 233

    Google Scholar 

  178. K. Mecke, C. Holste, W. F. Terentjev: Dislocation arrangement in cyclically deformed Mo, Krist. Tech. 15, 83 (1980)

    Google Scholar 

  179. S. Kong, B. Weiss, R. Stickler, M. Witwer, H. Hödl: Cyclic stress strain behavior of high melting point metals, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 720

    Google Scholar 

  180. D. R. Helebrand, R. I. Stephens: Cyclic yield behavior of Ta, J. Mater. Sci. 7, 530 (1972)

    Google Scholar 

  181. C. Stickler, W. Knabl, R. Stickler, B. Weiss: Cyclic behavior of Ta at low temperatures under low stresses and strain rates, Proc. 15th Plansee Seminar, Vol. 3 (Plansee AG, Reutte 2001) p. 34

    Google Scholar 

  182. J. M. Meiniger, J. C. Gibeling: LCF of Nb and Nb-1Zr alloys, Met. Trans. 23A, 3077 (1992)

    Google Scholar 

  183. H. J. Shi, L. S. Niu, C. Korn, G. Pluvinage: High temperature fatigue behavior of Mo-TZM alloy under mechanical and thermomechanical cyclic load, J. Nuclear Mat. 278, 328 (2000)

    ADS  Google Scholar 

  184. R. F. Brodrick: LCF-data of P/M-W between 1650 and 3300 °C, Proc. ASTM 64, 505 (1965)

    Google Scholar 

  185. S. S. Manson: Thermal Stress and Low Cycle Fatigue (McGraw-Hill, New York 1981) p. 187

    Google Scholar 

  186. R. E. Schmunk, G. E. Korth, M. Ulrickson: Tensile and LCF measurements on cross rolled tungsten, J. Nuclear Mat. 103, 943 (1981)

    Google Scholar 

  187. T. Kimishima, M. Sukekawa, K. Owada, M. Shimizu: Fatigue data of Mo, 9th Symp. on Engineering Problems of Fusion Research 1981 (IEEE, New York 1981) 255

    Google Scholar 

  188. H. Nishi, T. Oku, T. Kodeira: Influence of microstructural change caused by cyclic strain on the LCF strength of sintered Mo, Fusion-Engineering-Design 9, 123 (1989)

    Google Scholar 

  189. Z. M. Sun, Z. G. Wang, H. Hödl, R. Stickler, B. Weiss: Low cycle fatigue and creep behavior of recrystallized Mo near room temperature, Materialwissenschaft und Werkstofftechnik 26, 483 (1995)

    Google Scholar 

  190. M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk, S. Stanzl-Tschegg: Influence of loading frequency on high cycle fatigue properties of bcc and hcp metals, Mat. Sci. Eng. A A308, 143 (2001)

    Google Scholar 

  191. H. A. Calderon, G. Kostorz: Microstructure and plasticity of two molybdenum-base alloys (TZM), Mat. Sci. Eng. A A160, 189 (1993)

    Google Scholar 

  192. C. W. Marschall, F. C. Holden: Fracture toughness of refractory metals and alloys. In: High Temperature Refractory Metals, ed. by L. Richardson (Gordon Breach, New York 1964) p. 129

    Google Scholar 

  193. M. Rödig, H. Derz, G. Pott, B. Werner: Fracture mechanics investigations of TZM and Mo5Re, Proc. 14th Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1997) p. 781

    Google Scholar 

  194. D. Padhi, J. J. Lewandowski: Effects of test temperature and grain size on the charpy impact toughness and dynamic toughness (KID) of polycrystalline niobium, Met. Mat. Trans. A 34, 967 (2003)

    Google Scholar 

  195. J. A. Shields, P. Lipetzly, A. J. Mueller: Fracture toughness of 6.4 mm arc cast Mo and TZM Plate at RT and 300 °C, Proc. 15th Plansee Seminar, Vol. 4 (Plansee AG, Reutte 2001) p. 187

    Google Scholar 

  196. J. X. Zhang, L. Liu, M. L. Zhou, Y. C. Hu, T. Y. Zuo: Fracture toughness of sintered Mo-La2O3, Internat. J. Refract. Met. Hard Mat. 17, 405 (1999)

    Google Scholar 

  197. D. L. Chen, B. Weiss, R. Stickler: The effective fatigue threshold: Significance of the loading cycle below the crack opening load, Internat. J. Fatigue 16, 485 (1994)

    Google Scholar 

  198. J. Riedle: Bruchwiderstand in Wolfram-Einkristallen: Einfluß der kristallographischen Orientierung, der Temperatur und der Lastrate. In: Fortschrittsberichte VDI, Reihe 18, Mechanik/Bruchmechanik, Vol. 184 (VDI, Düsseldorf 1995) in German

    Google Scholar 

  199. R. Pippan: Bruchzähigkeitsuntersuchungen an W Proben (Erich Schmid Institut, Leoben 1999) Report in German

    Google Scholar 

  200. Y. Mutoh, K. Ichikawa, K. Nagata, M. Takeuchi: Effect of Re addition on fracture toughness of W at elevated temperatures, J. Mat. Sci. 30, 770 (1995)

    ADS  Google Scholar 

  201. A. Fathulla, B. Weiss, R. Stickler: Short fatigue cracks in technical P/M-Mo alloys. In: The Behavior of Short Fatigue Cracks, Mechanical Engineering Publications, Vol. 1 (EGF Pub., Suffolk 1986) p. 115

    Google Scholar 

  202. R. Grill, H. Clemens, P. Rödhammer, A. Voiticek: P/M processing, characterization and application of Ta-10W, Proc. 14th Plansee Seminar, Vol. 4 (Plansee AG, Reutte 1997) p. 211

    Google Scholar 

  203. R. Heidenreich, R. Schäfer, H. Clemens, M. Witwer: Mechanical properties of high-temperature fasteners from refractory alloys, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 664

    Google Scholar 

  204. A. Fathulla, B. Weiss, R. Stickler, J. Femböck: The initiation and growth of short cracks in pm-Mo, Proc. 11st Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1985) p. 45

    Google Scholar 

  205. H. Kitagawa, S. Takahashi: Applicability of fracture mechanics to very small cracks or the cracks in the early stage, Proc. second international conference on mechanical behavior of materials (ASM, Metals Park 1976) 627

    Google Scholar 

  206. B. Weiss, R. Stickler: Methods for predicting the fatigue strength of P/M-materials, Proc. International Powder Metallurgy Conf. PM'88, Orlando 1988, 3

    Google Scholar 

  207. B. Weiss, R. Stickler, A. F. Blom: A model for the description of the influence of small 3-dimensional defects on the HCF limit, Proc. Conf.: Short Fatigue Cracks, Sheffield 1990 (Mechanical Engineering Publications Limited, Suffolk 1992) 423

    Google Scholar 

  208. G. Leichtfried: Die Entwicklung von kriechfesten Molybdän - Seltenerdoxid - Werkstoffen für Hochtemperaturanwendungen. Ph.D. Thesis (Montanuniversität, Leoben 1997) in German

    Google Scholar 

  209. D. M. Moon, R. Stickler: Creep behavior of fine wires of P/M pure, doped and thoriated tungsten, High Temp. High Press. 3, 503 (1971)

    Google Scholar 

  210. J. W. Pugh: On the short time creep rupture properties of lamp wire, Metall. Trans. 4, 533 (1973)

    Google Scholar 

  211. J. H. Schröder, E. Arzt: Weak beam studies of dislocation/dispersoid interaction in an ODS superalloy, Scripta Met. 19, 1129 (1985)

    Google Scholar 

  212. J. Rössler, E. Arzt: Kinetics of dislocation climb over hard particles – Climb without attractive particle-dislocation interaction, Acta Met. 36, 1043 (1988)

    Google Scholar 

  213. J. Rössler, E. Arzt: A new model-based creep equation for dispersion strengthened materials, Acta Met. Mat. 38(4), 671 (1990)

    Google Scholar 

  214. G. Zilberstein, J. Selverian: Creep deformation of non-sag tungsten in argon doped with low oxygen concentrations, Proc. 13rd Plansee Seminar, Vol. 1 (Plansee AG, Reutte 1993) p. 132

    Google Scholar 

  215. G. Zilberstein: Creep properties of non-sag tungsten recrystallized in stagnant oxygen-doped argon, Int. J. Refract. Met. Hard Mat. 16, 71 (1998)

    Google Scholar 

  216. Degussa AG (Ed.): Edelmetall-Taschenbuch (Degussa, Frankfurt 1967)

    Google Scholar 

  217. Degussa AG (Ed.): Edelmetall-Taschenbuch, 2nd edn. (Hüthig, Heidelberg 1995)

    Google Scholar 

  218. L. S. Benner, T. Suzuki, K. Meguro, S. Tanaka (Eds.): Precious Metals, Science, Technology (Int. Precious Metals Institute, Allentown 1991)

    Google Scholar 

  219. B. Predel (Ed.): Phase Equilibria, Crystallographic, Thermodynamic Data of Binary Alloys, Landolt–Börnstein, New Series targetIV/5http://www.springerlink.com/link.asp?id=fgpck6dbkxnu (Springer, Berlin, Heidelberg 1991–1998)

    Google Scholar 

  220. E. Raub: Die Edelmetalle und ihre Legierungen (Springer, Berlin, Heidelberg 1940)

    Google Scholar 

  221. P. J. Spencer, K. Hack: Swiss Materials 2, 69–73 (1990)

    Google Scholar 

  222. C. J. Smithells, E. A. Brandes: Metals Reference Book, 5th edn. (Butterworth, London 1977)

    Google Scholar 

  223. P. Villars, L. D. Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 2, 3 (American Society for Metals, Metals Park 1985)

    Google Scholar 

  224. Landolt–Börnstein: Technik, Landolt–Börnstein, New Series targetIV/4http://www.springerlink.com/link.asp?id=hpf33a19kl0t, 6th edn. (Springer, Berlin, Heidelberg 1967)

  225. W. Hume-Rothery, G. V. Raynor: The Structure of Metals and Alloys (Institute of Metals, London 1956)

    Google Scholar 

  226. Gmelin: Handbuch der anorganischen Chemie, Syst. Nr. 61 (Springer, Berlin, Heidelberg 1970–1975)

    Google Scholar 

  227. V. Behrens, K. H. Schröder: Werkstoffe für elektrische Kontakte und ihre Anwendungen, Kontakt u. Studium, Vol. 366 (Expert, Ehningen 1992)

    Google Scholar 

  228. W. H. Cubberly, H. Baker, D. Benjamin (Eds.): Metals Handbook, Vol. 2, 9th edn. (American Society for Metals, Metals Park 1979) pp. 671–678

    Google Scholar 

  229. E. M. Savitskii, A. Prince: Handbook of Precious Metals (Hemisphere, New York 1989) pp. 117–128

    Google Scholar 

  230. K.-H. Hellwege, A. M. Hellwege (Eds.): Elastics, Piezolelectric, Pyroelectric, Electrooptic Constants, Nonlinear Dielectric Susceptibilities of Crystals, Landolt–Börnstein, New Series targetIII/18http://www.springerlink.com/link.asp?id=862ynprdtcpe (Springer, Berlin, Heidelberg 1984) p. 66

    Google Scholar 

  231. Doduco: Datenbuch, Handbuch für Techniker, 2. Aufl. (Doduco, Pforzheim 1977)

    Google Scholar 

  232. H. Spengler: Metall 18, 36 (1964)

    Google Scholar 

  233. K.-H. Hellwege, J. L. Olsen: Metals – Electronic Transport Phenomena, Landolt–Börnstein, New Series targetIII/15http://www.springerlink.com/link.asp?id=0qe42xm9483d (Springer, Berlin, Heidelberg 1982) p. 167

    Google Scholar 

  234. D. D. Pollok: Trans. Metall. Soc. AIME 230, 753 (1964)

    Google Scholar 

  235. H. Flükiger, W. Klose (Eds.): Superconductors Ac–Na, Landolt–Börnstein, New Series targetIII/21http://www.springerlink.com/link.asp?id=t4wrml3m7w3d (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  236. Chr. Raub: Z. Metallkde. 55, 195 (1964)

    Google Scholar 

  237. R. E. Hummel: Optische Eigenschaften von Metallen und Legierungen (Springer, Berlin, Heidelberg pp. 158,178

    Google Scholar 

  238. H. Mehrer (Ed.): Diffusion in Solid Metals and Alloys, Landolt–Börnstein, New Series targetIII/26http://www.springerlink.com/link.asp?id=hwuatn0j210u (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  239. G. Schlamp: Mater. Sci. Technol. 8, 471–587 (1996)

    Google Scholar 

  240. D. Lee: Modern Chlor-Alkali Technology, Vol. 2, ed. by C. Jackson (Horwood, Chichester 1983)

    Google Scholar 

  241. S. U. Falk, A. J. Salkind: Alkaline Storage Batteries (Wiley, New York 1971)

    Google Scholar 

  242. A. Fleischer, J. J. Lander: Zinc-Silver-Oxide Batteries (Wiley, New York 1971)

    Google Scholar 

  243. H. Renner: Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim 2002)

    Google Scholar 

  244. D. Z. Stöckel: Z. Werkstofftechnik 10, 238 (1979)

    Google Scholar 

  245. B. Predel: Phase Equilibria, Crystallophic and Thermodynamik Data of Binary Alloys, Landolt–Börnstein, New Series targetIV/5http://www.springerlink.com/link.asp?id=fgpck6dbkxnu (Springer, Berlin, Heidelberg 1991–1998)

    Google Scholar 

  246. H. Renner: Ullmann's Encyclopedia of Industrial Chemistry, 6th edn. (Wiley-VCH, Weinheim 2001)

    Google Scholar 

  247. R. Forro: Gold Bull. 36(2), 39–58 (2003)

    Google Scholar 

  248. N. Yuantao: Gold Bull. 34(3), 77–87 (2001)

    Google Scholar 

  249. H. Ahlborn, G. Wassermann: Z. Metallkde. 55, 685 (1964)

    Google Scholar 

  250. E. Drost, J. H. Hausselt: Interdisc. Sci. Rev. 17, 271–280 (1992)

    Google Scholar 

  251. B. Kempf, J. Hausselt: Interdisc. Sci. Rev. 17, 251–260 (1992)

    Google Scholar 

  252. G. Humpston: Gold Bull. 26, 139 (1993)

    Google Scholar 

  253. C. J. Raub D. Ott: Z. Metallkde. 25(4), 629 (1992)

    Google Scholar 

  254. M. Du Toit, E. van der Lingen, L. Glaner, R. Süss: Gold Bulletin, quarterly reviews, Vol. 35, ed. by C. Corti, D. Thompson (World gold council, London 2002) p. 49

    Google Scholar 

  255. Gmelin: Gmelin Handbuch der anorganischen Chemie, Vol. 62 (Springer, Berlin, Heidelberg 1970–1975) p. 619

    Google Scholar 

  256. H. R. Khan, Ch. R. Raub: Gold Bulletin, quarterly reviews, Vol. 8, ed. by C. Corti, D. Thompson (World gold council, London 1975) pp. 114–118

    Google Scholar 

  257. H. R. Khan: Gold Bulletin, quarterly reviews, Vol. 17, ed. by C. Corti, D. Thompson (World gold council, London 1984) pp. 94–100

    Google Scholar 

  258. J. Kopp: Gold Bulletin, quarterly reviews, Vol. 9, ed. by C. Corti, D. Thompson (World gold council, London 1976) p. 55

    Google Scholar 

  259. M. Hansen, K. Anderko: Constitution of Binary Alloys, 2nd edn. (McGraw-Hill, New York 1958) pp. 195, 221

    Google Scholar 

  260. E. Raub: Die Edelmetalle und ihre Legierungen, Reine angewandte Metallkunde, Vol. 5, ed. by W. Köster (Springer, Berlin, Heidelberg 1955) Chap. II, A5, pp. 53,54

    Google Scholar 

  261. T. Shiraishi, K. Hisatsune, Y. Tanaka, E. Miura, Y. Takuma: Gold Bull. 34, 130 (2001)

    Google Scholar 

  262. W. S. Rapson, T. Groenewald: Gold Usage (Academic Press, New York 1978) p. 37

    Google Scholar 

  263. D. Compton et al.: Gold Bulletin, quarterly reviews, Vol. 10, ed. by C. Corti, D. Thompson (World gold council, London 1977) p. 51

    Google Scholar 

  264. G. C. Bond: Gold Bulletin, quarterly reviews, Vol. 34, ed. by C. Corti, D. Thompson (World gold council, London 2001) p. 117

    Google Scholar 

  265. A. St. K. Hashmi: Gold Bulletin, quarterly reviews, Vol. 36, ed. by C. Corti, D. Thompson (World gold council, London 2003) p. 3

    Google Scholar 

  266. M. Gupta, A. K. Tripathi: Gold Bulletin, quarterly reviews, Vol. 34, ed. by C. Corti, D. Thompson (World gold council, London 2001) p. 120

    Google Scholar 

  267. C. Corti, R. J. Holliday, D. T. Thompson: Gold Bulletin, quarterly reviews, Vol. 35 (World gold council, London 2002) p. 111

    Google Scholar 

  268. R. Grisel, K. J. Weststrate, A. Gluhoi, B. E. Nieuwenhuys: Gold Bull. 35, 39–45 (2002)

    Google Scholar 

  269. H. Knosp, R. J. Holliday, Ch. W. Corti: Gold in dentistry, Vol. 36 2003) pp. 93–102

    Google Scholar 

  270. G. Gafner: Gold Bulletin, quarterly reviews, Vol. 22, ed. by C. Corti, D. Thompson (World gold council, London 1989) p. 112

    Google Scholar 

  271. G. Humston, D. M. Jacobson: Gold Bulletin, quarterly reviews, Vol. 25, ed. by C. Corti, D. Thompson (World gold council, London 1992) p. 139

    Google Scholar 

  272. D. R. Olsen, H. M. Berg: , Proc. 27th Electronic Components Conf. (IEEE, Piscataway 1977)

    Google Scholar 

  273. G. Zwingmann: Z. Metall. 34(18), 726 (1964)

    Google Scholar 

  274. G. Petzow, G. Effenberg: Ternary Alloys (Verlag Chemie, Weinheim 1988)

    Google Scholar 

  275. W. Müller: Metallische Lotwerkstoffe (DVS, Düsseldorf 1990)

    Google Scholar 

  276. K. Toyoshima, Somorjai: Cat. Rev. Sci. Eng. 19 (1979)

    Google Scholar 

  277. A. S. Darling: , Review 175 (Institute of Metals, London 1973)

    Google Scholar 

  278. J. B. Hunter: Platinum Met. Rev. 4(4), 130 (1960)

    Google Scholar 

  279. A. G. Knapton: Platinum Met. Rev. 21(2), 44 (1977)

    Google Scholar 

  280. R. S. Irani: Metals Rev. 17, 22 (1973)

    Google Scholar 

  281. A. Kussmann, G. Von Rittberg: Ann. Phys. 7, 173 (1950)

    Google Scholar 

  282. A. Kussmann, K. Jesson: J. Phys. Soc. Jpn. 17, 272 (1962)

    Google Scholar 

  283. A. S. Darling: Platinum Met. Rev. 11, 138 (1967)

    Google Scholar 

  284. A. S. Darling: Platinum Met. Rev. 13, 53 (1969)

    Google Scholar 

  285. R. S. Irani, R. W. Cahn: Met. Rev. 16, 49 (1972)

    Google Scholar 

  286. H. Ocken, J. H. N. Van Vucht: J. Less-Comm. Met. 15, 196–199 (1968)

    Google Scholar 

  287. I. Gurappa: Platinum Met. Rev. 45(3), 124 (2001)

    Google Scholar 

  288. I. Wolff, P. J. Hill: Platinum Met. Rev. 44(4), 161 (2000)

    Google Scholar 

  289. J.  Merker, D. Lupton, M.  Töpfer, H. Knake: Platinum Met. Rev. 45, 76–80 (2001)

    Google Scholar 

  290. G. Borelius et al.: Proc. K. Acad. Wet. 33, 17 (1930)

    Google Scholar 

  291. Th. J. Colacot: Platinum Met. Rev. 46(2), 83 (2002)

    Google Scholar 

  292. I. M. Wolff, P. J. Hill: Platinum Met. Rev. 44(4), 159 (2000)

    Google Scholar 

  293. Y. Yamabe-Mitarai, Y. F. Gu, H. Harada: Platinum Met. Rev. 46(2), 77, 78 (2002)

    Google Scholar 

  294. M. Graff, B. Kempf, J. Breme: Metall 53, 616–621 (1999)

    Google Scholar 

  295. J. H. Jones: Platinum Met. Rev. 44(3), 100 (2000)

    Google Scholar 

  296. I. M. Wolff, P. J. Hill: Platinum Met. Rev. 44(4), 164 (2000)

    Google Scholar 

  297. M. Fallot: Ann. Phys. (Paris) 10, 29 (1938)

    Google Scholar 

  298. Philips AG: Philips Techn. Rev. , 73 (1966)

    Google Scholar 

  299. S. Guruswamy: Engineering Properties and Applications of Lead Alloys (Dekker, New York 2000) pp. 1–635

    Google Scholar 

  300. Lead Industries Association: Properties of Lead and Lead Alloys, Booklet No. 5M (Lead Industries Association, New York 1983) pp. 12–83

    Google Scholar 

  301. Lead Industries Association: Lead for Corrosion Resistant Applications – A Guide (Lead Industries Association, New York 1974)

    Google Scholar 

  302. G. Baralis, I. Tangerini: A study of some dynamic properties of lead and its alloys, Proc. 3rd Intl. Lead Conference, Venice, ed. by European Lead Development Committee and Lead Development Association (Pergamon, London 1968) 309–319

    Google Scholar 

  303. W. Hofmann: Lead and Lead Alloys (Springer, Berlin, Heidelberg 1970)

    Google Scholar 

  304. G. Kerry, P. Lord: Project Report LM-375, International Lead Zinc Research Organization (ILZRO) (University Salford, Salford 1990)

    Google Scholar 

  305. Lead Industries Association: Lead Shielding for the Nuclear Industry (Lead Industries Association, New York 1985)

    Google Scholar 

  306. R. D. Prengaman: Wrought lead–calcium–tin alloys for tubular lead/acid battery grids, J. Power Sources 53, 207–214 (1995)

    Google Scholar 

  307. A. Siegmund, R. D. Prengaman: Grid alloys for automobile batteries in the new millenium, J. Metals 53, 38 (2001)

    Google Scholar 

  308. ASTM: Standard Specification for White Metal Bearing Alloys, ASTM B23 (American Society for Testing Materials, West Conshohocken 1996)

    Google Scholar 

  309. Lead Industries Association: Solders and Soldering – A Primer (Lead Industries Association, Sparta 1996)

    Google Scholar 

  310. P. Adeva, G. Caruana, M. Aballe, M. Torralba: The lead-rich corner of the Pb–Ca–Sn phase diagram, Mater. Sci. Eng. 54, 229–236 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this entry

Cite this entry

Goodwin, F. et al. (2005). Metals. In: Martienssen, W., Warlimont, H. (eds) Springer Handbook of Condensed Matter and Materials Data. Springer Handbooks. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30437-1_5

Download citation

Publish with us

Policies and ethics