Skip to main content

Magnetic Resonance Imaging in Pharmaceutical Safety Assessment

  • Reference work entry

1 I.Q.1. Introduction

ICIpharmaceutical safety assessment (now AstraZeneca) and Sandoz (now Novartis) introduced the first Magnetic Resonance Imaging (MRI) scanners into the pharmaceutical industry over twenty years ago. Most major pharmaceutical companies have since invested in in-house MRI for the evaluation of preclinical drug efficacy and most are now using MRI in clinical trials at extramural centres. MRI has been successful in the pharmaceutical industry for the same reasons that it is popular in clinical practice; it is a non-invasive imaging technique with superb soft tissue contrast capable of delivering quantitative 3D information on organ anatomy and function (Beckmann et al. 2004; Maronpot et al. 2004). Because it is non-invasive aside from the need to anaesthetise animals to immobilise them during image acquisition, animals can be imaged on multiple occasions and studies can be designed so that each animal serves as its own control increasing the statistical power of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bambach GA, Penney DG, Negendank WG (1991) In situ assessment of the rat heart during chronic carbon monoxide exposure using nuclear magnetic resonance imaging. Journal of Applied Toxicology 11:43–49

    Article  PubMed  CAS  Google Scholar 

  • Beckmann N, Laurent D, Tigani B et al. (2004) Magnetic resonance imaging in drug discovery: lessons from disease areas. Drug Discovery Today 9:35–42

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Annal NY Acad Sci 508:333–348

    Article  CAS  Google Scholar 

  • Brown H, Prescott R (1999) Applied mixed models in medicine. Wiley, Chichester

    Google Scholar 

  • Clark JM, Brancati FL, Diehl AM (2002) Nonalcoholic fatty liver disease. Gastroenterology 122:1649–1657

    Article  PubMed  Google Scholar 

  • Coatney RW (2001) Ultrasound imaging: principles and applications in rodent research. Ilar Journal 42:233–247

    PubMed  CAS  Google Scholar 

  • Cockman MD, Hayes DA, Kuzmak BR (1993) Motion suppression improves quantification of rat liver volume in vivo by magnetic resonance imaging. Magnetic Resonance in Medicine 30:355–360

    Article  PubMed  CAS  Google Scholar 

  • Collins KA, Korcarz CE, Lang RM (2003) Use of echocardiography for the phenotypic assessment of genetically altered mice. Physiological Genomics 13:227–239

    PubMed  Google Scholar 

  • Daubioul C, Rousseau N, Demeure R et al. (2002) Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. Journal of Nutrition 132:967–973

    PubMed  CAS  Google Scholar 

  • de Simone G, Wallerson DC, Volpe M, Devereux RB (1990) Echocardiographic measurement of left ventricular mass and volume in normotensive and hypertensive rats. Necropsy validation. American Journal of Hypertension 3:688–696

    PubMed  Google Scholar 

  • Diehl AM (1999) Nonalcoholic steatohepatitis. Seminars in Liver Disease 19:221–229

    Article  PubMed  CAS  Google Scholar 

  • Garbow JR, Kataoka M, Flye MW (2004a) MRI measurement of liver regeneration in mice following partial hepatectomy. Magnetic Resonance in Medicine 52:177–180

    Article  PubMed  CAS  Google Scholar 

  • Garbow JR, Lin X, Sakata N et al. (2004b) In vivo MRS measurement of liver lipid levels in mice. Journal of Lipid Research 45:1364–1371

    Article  PubMed  CAS  Google Scholar 

  • Hajnal JV, Saeed N, Soar EJ et al. (1995) A registration and interpolation procedure for subvoxel matching of serially acquired MR images. Journal of Computer Assisted Tomography 19:289–296

    Article  PubMed  CAS  Google Scholar 

  • Hazle JD, Narayana PA, Dunsford HA (1991) In vivo NMR, biochemical, and histologic evaluation of alcohol-induced fatty liver in rat and a comparison with CCl4 hepatotoxicity. Magnetic Resonance in Medicine 19:124–135

    Article  PubMed  CAS  Google Scholar 

  • Hockings PD, Busza AL, Byrne J et al. (2003a) Validation of MRI measurement of cardiac output in the dog: The effects of dobutamine and minoxidil. Toxicology Mechanisms & Methods 13:39–43

    CAS  Google Scholar 

  • Hockings PD, Changani KK, Saeed N et al. (2003b) Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats. Diabetes, Obesity & Metabolism 5:234–243

    Article  CAS  Google Scholar 

  • Hockings PD, Roberts T, Campbell SP et al. (2002) Longitudinal magnetic resonance imaging quantitation of rat liver regeneration after partial hepatectomy. Toxicologic Pathology 30:606–610

    Article  PubMed  Google Scholar 

  • Hoffmann U, Globits S, Stefenelli T et al. (2001) The effects of ACE inhibitor therapy on left ventricular myocardial mass and diastolic filling in previously untreated hypertensive patients: a cine MRI study. J Magn Reson Imaging 14:16–22

    Article  PubMed  CAS  Google Scholar 

  • Koretsky AP, Williams DS (1992) Application of localized in vivo NMR to whole organ physiology in the animal. Annual Review of Physiology 54:799–826

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann J, Neumann–Haefelin C, Belz U et al. (2003) Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes 52:138–144

    Article  PubMed  CAS  Google Scholar 

  • Latour MG, Brault A, Huet PM, Lavoie JM (1999) Effects of acute physical exercise on hepatocyte volume and function in rat. American Journal of Physiology 276:R1258–1264

    PubMed  CAS  Google Scholar 

  • Lee JK, Dixon WT, Ling D et al. (1984) Fatty infiltration of the liver: demonstration by proton spectroscopic imaging. Preliminary observations. Radiology 153:195–201

    PubMed  CAS  Google Scholar 

  • Ling M, Brauer M (1992) Ethanol-induced fatty liver in the rat examined by in vivo 1H chemical shift selective magnetic resonance imaging and localized spectroscopic methods. Magnetic Resonance Imaging 10:663–677

    Article  PubMed  CAS  Google Scholar 

  • Longo R, Ricci C, Masutti F et al. (1993) Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Investigative Radiology 28:297–302

    Article  PubMed  CAS  Google Scholar 

  • Markiewicz W, Sechtem U, Kirby R et al. (1987) Measurement of ventricular volumes in the dog by nuclear magnetic resonance imaging. Journal of the American College of Cardiology 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Maronpot RR, Sills RC, Johnson GA (2004) Applications of magnetic resonance microscopy. Toxicologic Pathology 32 Suppl 2:42–48

    Article  Google Scholar 

  • Ou YC, Conolly RB, Thomas RS et al. (2001) A clonal growth model: time-course simulations of liver foci growth following penta- or hexachlorobenzene treatment in a medium-term bioassay. Cancer Research 61:1879–1889

    PubMed  CAS  Google Scholar 

  • Rudin M, Pedersen B, Umemura K, Zierhut W (1991) Determination of rat heart morphology and function in vivo in two models of cardiac hypertrophy by means of magnetic resonance imaging. Basic Research in Cardiology 86:165–174

    Article  PubMed  CAS  Google Scholar 

  • Schwarz AJ, Leach MO (2000) Implications of respiratory motion for the quantification of 2D MR spectroscopic imaging data in the abdomen. Physics in Medicine & Biology 45:2105–2116

    Article  CAS  Google Scholar 

  • Shapiro EP, Rogers WJ, Beyar R et al. (1989) Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation 79:706–711

    PubMed  CAS  Google Scholar 

  • Shoda T, Mitsumori K, Onodera H et al. (2000) Liver tumor-promoting effect of beta-naphthoflavone, a strong CYP 1A1/2 inducer, and the relationship between CYP 1A1/2 induction and Cx32 decrease in its hepatocarcinogenesis in the rat. Toxicologic Pathology 28:540–547

    Article  PubMed  CAS  Google Scholar 

  • Siren AL, Feuerstein G (1990) Cardiovascular effects of anatoxin-A in the conscious rat. Toxicology & Applied Pharmacology 102:91–100

    Article  CAS  Google Scholar 

  • Siri FM, Jelicks LA, Leinwand LA, Gardin JM (1997) Gated magnetic resonance imaging of normal and hypertrophied murine hearts. American Journal of Physiology 272:H2394–2402

    PubMed  CAS  Google Scholar 

  • Slawson SE, Roman BB, Williams DS, Koretsky AP (1998) Cardiac MRI of the normal and hypertrophied mouse heart. Magnetic Resonance in Medicine 39:980–987

    Article  PubMed  CAS  Google Scholar 

  • Szczepaniak LS, Babcock EE, Schick F et al. (1999) Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. American Journal of Physiology 276:E977–989

    PubMed  CAS  Google Scholar 

  • Szczepaniak LS, Nurenberg P, Leonard D et al. (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. American Journal of Physiology - Endocrinology & Metabolism 288:E462–468

    Article  CAS  Google Scholar 

  • Tang H, Vasselli JR, Wu EX et al. (2002) High-resolution magnetic resonance imaging tracks changes in organ and tissue mass in obese and aging rats. American Journal of Physiology - Regulatory Integrative & Comparative Physiology 282:R890–899

    PubMed  CAS  Google Scholar 

  • Wilson SJ, Brereton IM, Hockings P et al. (1993) Respiratory triggered imaging with an optical displacement sensor. Magnetic Resonance Imaging 11:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Tengowski M, Fasulo L et al. (2004) Measurement of fat/water ratios in rat liver using 3D three-point dixon MRI. Magnetic Resonance in Medicine 51:697–702

    Article  PubMed  Google Scholar 

  • Zhou YQ, Foster FS, Nieman BJ et al. (2004) Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging. Physiological Genomics 18:232–244

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hockings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg New York

About this entry

Cite this entry

Hockings, P. (2006). Magnetic Resonance Imaging in Pharmaceutical Safety Assessment. In: Vogel, H.G., Hock, F.J., Maas, J., Mayer, D. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29804-5_17

Download citation

Publish with us

Policies and ethics