Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Blackwelder, E., 1929. Cavernous rock surfaces of the desert. American Journal of Science, 17: 393–399.

    Google Scholar 

  2. Bryan, K., 1928. Niches and other cavities in sandstone at Chaco Canyon, New Mexico. Zeitschrift fur Geomorphologie, 3: 125–140.

    Google Scholar 

  3. Evans, I.S., 1970. Salt crystallization and rock weathering: a review. Revue De Géomorphologie Dynamique, 119: 153–177.

    Google Scholar 

  4. Mustoe, G.E., 1982. Cavernous weathering in the Capitol Reef desert. Utah. Earth Surface Processes and Landforms, 8: 517–526.

    Google Scholar 

  5. Rodriguez-Navarro, C., and Doehne, E., 1999. Salt weathering: influence of evaporation rate, supersaturation and crystallization. Earth Surface Processes and Landforms, 24: 191–209.

    Google Scholar 

  6. Young, A.R.M., 1987. Salt as an agent in the development of cavernous weathering. Geology, 15: 962–966.

    Google Scholar 

  7. American Geological Institute, 1960. Glossary of Geology and Related Sciences, 2nd edn. Washington DC: National Academy of Sciences.

    Google Scholar 

  8. Andrews, J.T., 1989. Postglacial emergence and submergence. In Fulton, R.J. (ed.), Quaternary Geology of Canada and Greenland. Geology of Canada no. 1. Geological Survey of Canada.

    Google Scholar 

  9. Bloom, A.L., 1971. Glacial-eustatic and isostatic controls of sea level since the last glaciation. In Turekian, K.K. (ed.), The Late Cenozoic Glacial Ages. New Haven and London: Yale University Press, pp. 355–379.

    Google Scholar 

  10. Chappell, J., 1974. Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. Geological Society of America Bulletin, 85: 553–570.

    Google Scholar 

  11. Crowell, J.C., 1986. Active tectonics along the western continental margin of the conterminous United States. In Wallace, R.E. (panel chairman), Active Tectonics. Studies in Geophysics. Washington DC: National Academy Press, pp. 20–29.

    Google Scholar 

  12. Dickinson, W.R., 1998. Geomorphology and geodynamics of the Cook-Austral island-seamount chain in the South Pacific Ocean: implications for hotspots and plumes. International Geology Review, 40: 1039–1075.

    Google Scholar 

  13. Kaizuka, S., 1992. Coastal evolution of a rapidly uplifting volcanic island: Iwo-Jima, western Pacific Ocean. Quaternary International, 15/16: 7–16.

    Google Scholar 

  14. Konishi, K., Omura, A., and Kimura, T., 1968. 234U–230Th dating of some Late Quaternary coralline limestones from southern Taiwan (Formosa). Geology and Palaeontology of Southeast Asia, 5: 211–224.

    Google Scholar 

  15. Lajoie, K.R., 1986. Coastal tectonics. In Wallace, R.E. (panel chairman), Active Tectonics. Studies in Geophysics, Washington DC: National Academics Press, pp. 95–124.

    Google Scholar 

  16. Liew, P.M., and Lin, C.F., 1987. Holocene tectonic activity of the Hengchun Peninsula as evidenced by the deformation of marine terraces. Memoir of the Geological Society of China, 9: 241–259.

    Google Scholar 

  17. Mitrovica, J.X., and Peltier, W.R., 1991. On postglacial geoid subsidence over the equatorial oceans. Journal of Geophysical Research, 96(B12): 20053–20071.

    Google Scholar 

  18. Morhange, C., Bourcier, M., Laborel, J., Giallanella, C., Goiran, J.P., Crimaco, L., and Vecchi, L., 1999. New data on historical relative sea level movements in Pozzuoli, Plaegrean Fields, southern Italy. Physics and Chemistry of the Earth, A, 24(4): 349–354.

    Google Scholar 

  19. Möner, N.A., 1979. The Fennoscandian uplift and Late Cenozoic geodynamics: geological evidence. Geojournal, 3: 287–318.

    Google Scholar 

  20. Möner, N.-A., 1980. The INQUA Neotectonic Commission. Bulletin INQUA Neotectonic Commission, 3: 1.

    Google Scholar 

  21. Paskoff, R., 1996. Atlas de Las Formas de Relieve de Chile. Instituto Geografico Militar de Chile.

    Google Scholar 

  22. Pirazzoli, P.A., 1991. World Atlas of Holocene Sea-Level Changes. Amsterdam: Elsevier.

    Google Scholar 

  23. Pirazzoli, P.A., 1995. Tectonic shorelines. In Carter, R.G.W., and Woodroffe, C.D. (eds.), Coastal Evolution: Late Quater-nary Shoreline Morphodynamics. Cambridge University Press, pp. 451–476.

    Google Scholar 

  24. Pirazzoli, P.A., Arnold, M., Giresse, P., Hsieh, M.L., and Liew, P.M., 1993. Marine deposits of late glacial times exposed by tectonic uplift on the east coast of Taiwan. Marine Geology, 110: 1–6.

    Google Scholar 

  25. Pirazzoli, P.A., Laborel, J., Saliège, J.F., Erol, O., Kayan, I., and Person, A., 1992. Holocene raised shorelines on the Hatay coasts (Turkey): palaeoecological and tectonic implications. Marine Geology, 96: 295–311.

    Google Scholar 

  26. Pirazzoli, P.A., Laborel, J., and Stiros, S.C., 1996. Earthquake clustering in the Eastern Mediterranean during historical times. Journal of Geophysical Research, 101(B3): 6083–6097.

    Google Scholar 

  27. Pirazzoli, P.A., and Montaggioni, L.F., 1988. Holocene sea-level changes in French Polynesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 68: 153–175.

    Google Scholar 

  28. Pirazzoli, P.A., and Salvat, B., 1992. Ancient shorelines and Quaternary vertical movements on Rurutu and Tubuai (Austral Isles, French Polynesia). Zeits, Geomorphol., 36: 431–451.

    Google Scholar 

  29. Plafker, G., 1965. Tectonic deformation associated with the 1964 Alaska Earthquake. Science, 148(3678): 1675–1687.

    Google Scholar 

  30. Stanley, D.J., 1997. Mediterranean deltas: subsidence as a majpr control of relative sea-level rise. In Briand, F., and Maldonado, A. (eds.), Transformations and Evolution of the Mediterranean Coastline. Monaco, CIESM Science Series No, 3, pp. 35–62.

    Google Scholar 

  31. Stanley, D.J., and Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265: 228–231.

    Google Scholar 

  32. Stanley, D.J., Warne, A.G., and Dunbar, J.B., 1996. Eastern Mississippi delta: late Wisconsin unconformity, overlying transgressive facies, sea level and subsidence. Engineering Geology, 45: 359–381.

    Google Scholar 

  33. Stewart, I.S., and Hancock, P.L., 1994. Neotectonics. In Hancock, P.L. (ed.), Continental Deformation. Tarrytown: Pergamon Press, pp. 370–409.

    Google Scholar 

  34. Valensise, G., and Ward, S.N., 1991. Long-term uplift of the Santa Cruz coastline in response to repeated earthquakes along the San Andreas Fault. Bulletin of the Seismological Society of America, 81: 1–11.

    Google Scholar 

  35. Vita-Finzi, C., 1986. Recent Earth Movements: An Introduction to Neotectonics. London, Academic Press, 226 p.

    Google Scholar 

  36. Wallace, R.E. (panel chairman), 1986. Active Tectonics. Studies in Geophysics, Washington DC: National Academy Press.

    Google Scholar 

  37. Berendsen, H.J.A., 1995. Holocene fluvial cycles in the Rhine delta? Journal of Coastal Research, 17(Special issue): 103–108.

    Google Scholar 

  38. Brouwer, A., 1956. Thalassostatic terraces and Pleistocene chronology. Leidse Geologische Mededelingen, 20: 22–33.

    Google Scholar 

  39. De Lamothe, Gen., 1918. Les anciennes nappes alluviales et lignes de rivage du bassin de la Somme et leur rapports avec celles de la Méiterranée occidentale. Bulletin de la Societe Géologique de France, 18(4): 3–58.

    Google Scholar 

  40. Fairbridge, R.W., 1968. The Encyclopedia of Geomorphology. New York: Van Nostrand Reinhold.

    Google Scholar 

  41. Fairbridge, R.W., 1992. Holocene marine coastal evolution of the United States. S.E.P.M.. Publication, 48: 9–20.

    Google Scholar 

  42. Kayan, I., 1997. Bronze Age regression and change of sedimentation on the Aegean coastal plain of Anatolia (Turkey). In Dalfes, H.N. et al. (eds.), Third Millennium BC Climate Change and Old World Collapse Berlin: Springer, NATO-ASI series 1, Global Environment Change 49: 431–450.

    Google Scholar 

  43. Lowrie, A., and Hamiter, R., 1995. Fifth and sixth order eustatic events during Holocene (fourth order) high stand influencing Mississippi delta-lobe switching. Journal of Coastal Research, 17(Special issue).

    Google Scholar 

  44. Ramsay, W., 1931. Changes of sea-level resulting from the increase and decrease of glaciation. Fennia, 52(5): 1–62.

    Google Scholar 

  45. Smit Sibinga, G.L., 1953. Pleistocene eustasy and glacial chronology in Borneo. Geologie en Mijnbouw, 15: 365–383.

    Google Scholar 

  46. Törnquist, T.E., 1994. Middle and Late Holocene avulsion history of the River Rhine (Rhine-Meuse delta, Netherlands). Geology, 222: 711–714.

    Google Scholar 

  47. Umbgrove, J.H.F., 1947. The Pulse of the Earth. The Hague: Nyhoff.

    Google Scholar 

  48. Wood, F.J., 2001. Tidal Dynamics, Vol. 2. Journal of Coastal Research, Special Issue 31.

    Google Scholar 

  49. Zeuner, F.E. (1945). The Pleistocene Period. London: Ray Society.

    Google Scholar 

  50. American Geological Institute, 1976. Dictionary of Geological Terms. Garden City, NY: Anchor Press.

    Google Scholar 

  51. Guilcher, A., 1958. Coastal and Submarine Morphology. London: Methuen.

    Google Scholar 

  52. Pethick, J., 1984. An Introduction to Coastal Geomorphology. London: Edward Arnold.

    Google Scholar 

  53. Stamp, L.D., 1966. Glossary of Geological Terms. London: Longmans.

    Google Scholar 

  54. Hands, E.B., 1979. Changes in rates of shore retreat, Lake Michigan, 1967–76. CERC TP 79-4, Vicksburg, MS: US Army Engineer Research and Development Laboratory.

    Google Scholar 

  55. Hicks, S.D., 1989. Tide and Current Glossary. Washington, DC: US Department of Commerce.

    Google Scholar 

  56. Hicks, S.D., Hull, W.V., Weir, J.P., Long, E.E., and Hickman, L.E., Jr., 1988. The national tidal datum convention of 1980—the final push. Proceeding, 3rd Biennial National Ocean Service International Hydrographic Conference, Washington, DC: National Ocean Service/NOAA. pp. 121–128.

    Google Scholar 

  57. Kraus, N.C., and Rosati, J.D., 1997. Interpretation of shorelineposition data for coastal engineering analysis. Coastal Engineering Technical Note II-39, Vicksburg, MS: US Army Engineer Research and Development Laboratory.

    Google Scholar 

  58. Reed, M., 2000. Shore and Sea Boundaries, Vol. 3; The Development of International Maritime Boundary Principles through United States Practice. Washington, DC: US Department of Commerce.

    Google Scholar 

  59. Shalowitz, A.L., 1962. Shore and Sea boundaries; Vol. 1; Boundary problems Associated with the Submerged Lands Cases and the Submerged Lands Acts. Washington, DC: US Department of Commerce.

    Google Scholar 

  60. Shalowitz, A.L., 1964. Shore and Sea Boundaries; Vol. 2; Interpretation and use of Coast and Geodetic Survey data. Washington: US Department of Commerce.

    Google Scholar 

  61. USACE, 2002. Hydrographic Surveying, Engineer Manual 1110-2-1003, especially Chapter 5, Tidal Datums, Sections 5–7 through 5–9. Washington, DC: US Army Corps of Engineers.

    Google Scholar 

  62. Allen, J.R.L., and Pye, K. (eds.), 1992. Salt marshes, Morphodynamics, Conservation and Engineering Significance. Cambridge: University Press.

    Google Scholar 

  63. Allen, P.A., 1997. Earth Surface Processes. Oxford: Blackwell Science.

    Google Scholar 

  64. Alongi, D.M., 1998. Coastal Ecosystem Processes. Boca Raton: CRC Press.

    Google Scholar 

  65. Archer, A.W., Kvale, E.P., and Johnson, H.R., 1991. Analysis of modern equatorial tidal periodicities as a test of information encoded in ancient tidal rhythmites. In Smith, D.G., Reinson, G.E., Zaitlin, B.A., and Rahmani, R.A. (eds.), Clastic tidal sedimentology. Canadian Society of Petroleum Geologist, Memoirs, 16: 189–196.

    Google Scholar 

  66. Bird, E.C., and Schwartz, M.L. (eds.), 1985. The World’s Coastline. New York: Van Nostrand Reinhold.

    Google Scholar 

  67. Borrego, J., Morales, J.A., and Pendon, J.G., 1995. Holocene estuarine facies along the mesotidal coast of Huelva, south-western Spain. In Flemming, B.W., and Bartholomä, A. (eds.), Tidal Signatures in Modern and Ancient Sediments. Oxford: Blackwell Science. Special Publication International Association of Sedimentologists, 24: 151–170.

    Google Scholar 

  68. Chapman, V.J., 1974. Salt Marshes and Salt Deserts of the World, 2nd edn. Lehre (Germany): Cramer.

    Google Scholar 

  69. Davies, J.L., 1964. A morphogenetic approach to world shorelines. Zeitschrift für Geomorphologie, 8: 127–142.

    Google Scholar 

  70. Davies, J.L., 1980. Geographical Variation in Coastal Development. Geomorphology Texts 4. London: Longman.

    Google Scholar 

  71. Davis, R.A., Jr. (ed.), 1994. Geology of Holocene Barrier Island Systems. Berlin: Springer.

    Google Scholar 

  72. de Boer, P.L., and Smith, D.G. (eds.), 1994. Orbital Forcing and Cyclic Sequences. Spec. Publ. Int. Ass. Sediment. No. 19. Oxford: Blackwell Science.

    Google Scholar 

  73. Delafontaine, M.T., and Flemming, B.W., 1989. Physical factors in barnacle community structure: a conceptual model. In Ros, J.D. (ed.), Topics in Marine Biology. Scientia Marina, 53: 405–410.

    Google Scholar 

  74. Dietrich, G., Kalle, K., Krauss, W., and Siedler, G., 1975. Introductory Oceanography, 3rd edn. in German. Berlin: Gebr. Borntraeger.

    Google Scholar 

  75. Doodson, A.T., 1922. The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London, A100: 305–329.

    Google Scholar 

  76. Flemming, B.W., and Hertweck, G. (eds.), 1994. Tidal flats and barrier systems of continental Europe: a selective overview. Senckenbergiana maritima, 24: 1–209.

    Google Scholar 

  77. French, P.W., 1997. Coastal and Estuarine Management. London: Routledge.

    Google Scholar 

  78. Gray, A.J., 1992. Salt marsh plant ecology: zonation and succession revisited. In Allen, J.R.L., and Pye, K. (eds.), Salt Marshes. Cambridge: Cambridge University Press, pp. 63–79.

    Google Scholar 

  79. Hayes, M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In Leatherman, S.P. (ed.), Barrier Islands. New York: Academic Press, pp. 1–27.

    Google Scholar 

  80. Horikawa, 1989. Nearshore Dynamics and Coastal Processes: Theory, Measurement, and Predictive Models. Tokyo: University of Tokyo Press.

    Google Scholar 

  81. Kjerfve, B., and Magill, K.E., 1989. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Marine Geology, 88: 197–199.

    Google Scholar 

  82. Lewis, J.R., 1972. The Ecology of Rocky Shores. London: The English University Press.

    Google Scholar 

  83. Lugo, A.E., and Snedaker, S.C., 1974. The ecology of mangroves. Annual Review of the Ecology and Systematics, 5: 39–64.

    Google Scholar 

  84. McLachlan, A., and Erasmus, T. (eds.), 1983. Sandy Beaches as Ecosystems. Developments in Hydrobiology 19. The Hague: Dr. W. Junk Publishers.

    Google Scholar 

  85. McLellan, H.J., 1975. Elements of Physical Oceanography. Oxford: Pergamon Press.

    Google Scholar 

  86. Newell, R.C., 1979. Biology of Intertidal Animals. Faversham (UK): Marine Ecological Surveys Ltd.

    Google Scholar 

  87. Oost, A.P., de Haas, H., Ijnsen, F., van den Boogert, J.M., and de Boer, P.L., 1993. The 18.6 year nodal cycle and its impact on tidal sedimentation. Sedimentary Geology, 87: 1–11.

    Google Scholar 

  88. Raffaeli, D., and Hawkins, S., 1996. Intertidal Ecology. London: Chapman ⇐p; Hall.

    Google Scholar 

  89. Streif, H., 1990. The East Frisian Coast. North Sea, Islands, Wadden Sea, and Marshes (in German). Berlin: Borntraeger.

    Google Scholar 

  90. Thomas, M.L.H., 1985. Littoral community structure and zonation on the rocky shores of Bermuda. Bulletin of Marine Science, 37: 857–870.

    Google Scholar 

  91. Williams, G.E., 1991. Upper Proterozoic tidal rhythmites, South Australia: sedimentary features, deposition, and implications for the earth’s paleorotation. In Smith, D.G., Reinson, G.E., Zaitlin, B.A., and Rahmani, R.A. (eds.), Clastic Tidal Sedimentology. Canadian Society of Petroleum Geologists, Memoir, 16: 161–178.

    Google Scholar 

  92. Armon, J.W., 1979. Landward sediment transfers in a transgressive barrier island system, Canada. In Leatherman, S.P. (ed.), Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico. New York: Academic Press, pp. 65–80.

    Google Scholar 

  93. Aubrey, D.G., and Speer, P.E., 1984. Updrift migration of tidal inlets. Journal of Geology, 92: 531–546.

    Google Scholar 

  94. Barnard, P.L., and Davis, R.A., 1999. Anthropogenic versus natural influences on inlet evolution: West-Central Florida. Proceedings, Coastal Sediments’ 99, ASCE, pp. 1489–1504.

    Google Scholar 

  95. Boothroyd, J.C., Friedrich, N.E., and McGinn, S.R., 1985. Geology of microtidal coastal lagoons, RI. In Oertel, G.F., and Leatherman, S.P. (ed.), Barrier Islands. Marine Geology, 63: 35–76.

    Google Scholar 

  96. Byrne, R.J., Bullock, P., and Taylor, D.G., 1975. Response characteristics of a tidal inlet: a case study. In Cronin, L.E. (ed.), Estuarine Research, Vol. 2. New York: Academic Press, pp. 201–216.

    Google Scholar 

  97. Davis, R.A., Jr., and Hayes, M.O., 1984. What is a wave-dominated coast? Marine Geology, 60: 313–329.

    Google Scholar 

  98. Fisher, J.J., 1962. Geomorphic expression of former inlets along the Outer Banks of North Carolina, unpub. Masters thesis. Chapel Hill: University of North Carolina.

    Google Scholar 

  99. FitzGerald, D.M., 1982. Sediment bypassing at mixed energy tidal inlets. Proceedings 18th Coastal Engineering Conference, ASCE, pp. 1094–1118.

    Google Scholar 

  100. FitzGerald, D.M., 1988. Shoreline erosional—depositional processes associated with tidal inlets. In Aubrey, D.G., and Weishar, L. (eds.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. Berlin: Springer, pp. 186–225.

    Google Scholar 

  101. FitzGerald, D.M., 1996. Geomorphic variability and morphologic and sedimentological controls on tidal inlets. In Mehta, A.J. (ed.), Understanding Physical Proc. at Tidal Inlets. Journal of Coastal Research (Special Issue), 23: 47–71.

    Google Scholar 

  102. FitzGerald, D.M., Kraus, N.C., and Hands, E.B., 2000. Natural mechanisms of sediment bypassing at tidal inlets, ERDC/CHL-IV-Vicksburg, MS: US Army Engineer Research and Development Center.

    Google Scholar 

  103. FitzGerald, D.M., and Penland, S., 1987. Backbarrier dynamics of the East Friesian Island. Journal of Sedimentary Petrology, 57: 746–754.

    Google Scholar 

  104. FitzGerald, D.M., Penland, S., and Nummedal, D., 1984. Control of barrier island shape by inlet sediment bypassing: East Friesian Islands, West Germany. Marine Geology, 60: 355–376.

    Google Scholar 

  105. Gaudiano, D.J., and Kana, T.W., 2000. Shoal bypassing in South Carolina tidal inlets: geomorphic variables and empirical predictions for nine mesoscale inlets. Journal of Coastal Research, 17: 280–291.

    Google Scholar 

  106. Halsey, S., 1979. Nexius: a new model of barrier island development. In Leatherman, S.P. (ed.), Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico. New York: Academic Press, pp. 185–210.

    Google Scholar 

  107. Hayes, M.O., 1975. Morphology of sand accumulations in estauries. In Cronin, L.E. (ed.), Estuarine Research, Vol. 2. New York: Academic Press, pp. 3–22.

    Google Scholar 

  108. Hayes, M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In Leatherman, S.P. (ed.), Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico. New York: Academic Press, pp. 1–28.

    Google Scholar 

  109. Hayes, M.O., FitzGerald, D.M., Humes, L.J., and Wilson, S.J., 1976. Geomorphology of Kiawah Island, South Carolina, Columbia: Coastal Research Division, University of South Carolina, pp. 80–100.

    Google Scholar 

  110. Jarrett, J.T., 1976. Tidal prism-inlet area relationships. Vicksburg, MS: Us Army Corps of Engineers, Waterways Experiment Station, GITI Report No. 3.

    Google Scholar 

  111. Moslow, T.F., and Heron, S.D., 1978. Relict inlets: preservation and occurrence in the Holocene stratigraphy of southern Core Banks, North Carolina. Journal of Sedimentary Petrology, 48: 1275–1286.

    Google Scholar 

  112. Moslow, T.F., and Tye, R.S., 1985. Recognition and characteristic of Holocene tidal inlet sequences. Marine Geology, 63: 129–151.

    Google Scholar 

  113. O’Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering, 1: 738–739.

    Google Scholar 

  114. O’Brien, M.P., 1969. Equilibrium flow areas of inlets on sandy coasts. Journal of Waterways, Harbors, and Coastal Engineering ASCE, 95: 43–55.

    Google Scholar 

  115. Stauble, D.K., and Cialone, M.A., 1996. Ebb shoal evolution and sediment management techniques Ocean City Inlet, Maryland. Procedings 9th National Conference on Beach Nourishment, St. Petersburg, FL, pp. 209–224.

    Google Scholar 

  116. Walton, T.L., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. Proceedings of 15th Coastal Engineering Conference, ASCE, Honolulu, Hawaii, pp. 1919–1937.

    Google Scholar 

  117. Alexander, C.R., Davis, R.A., and Henry, V.J. (eds.), 1998. Tidalites: Processes and Products. SEPM (Society for Sedimentary Geology), Special Publications, 61.

    Google Scholar 

  118. Allen, J.R.L., 1970. Sediments of the modern Niger Delta: a summary and review. In Morgan, J.P. (ed.), Deltaic Sedimentation: Modern and Ancient. Society of Economic Paleontologists and Mineralogists, Special Publication No. 15, pp. 138–151.

    Google Scholar 

  119. Beeftink, W.G., Rozema, J., and Huiskes, A.H.L. (eds.), 1985. Ecology of Coastal Vegetation. Dordrecht: Dr W. Junk Publishers.

    Google Scholar 

  120. Black, K.S., Paterson, D.M., and Cramp, A. (eds.), 1998. Sedimentary Processes in the Intertidal Zone. Geological Society, London, Special Publications, 139.

    Google Scholar 

  121. Chapman, V.J. (ed.), 1977. Ecosystems of the World, Vol 1, Wet Coastal Ecosystems. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  122. Coleman, J.M., Gagliano, S.M., and Smith, W.G., 1970. Sedimentation in a Malaysian high tide tropical delta. In Morgan, J.P. (ed.), Deltaic Sedimentation: Modern and Ancient. Society of Economic Paleontologists and Mineralogists, Special Publication No. 15, pp. 185–197.

    Google Scholar 

  123. Dankers, N., Wolff, W.J., and Zijlstra, J.J. (eds.), 1983. Fishes and fisheries of the Wadden Sea, Report 5. In Wolff, W.J. (ed.), Ecology of the Wadden Sea, Vol 2. Rotterdam: A. A. Balkema.

    Google Scholar 

  124. Davies, J.L., 1980. Geographical Variation in Coastal Development, 2nd edn. London: Longman.

    Google Scholar 

  125. Evans, G., 1975. Intertidal flat deposits of the wash, western margin of the North Sea. In Ginsburg, R.N. (ed.), Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag, pp. 13–20.

    Google Scholar 

  126. Ginsburg, R.N. (ed.), 1975. Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag.

    Google Scholar 

  127. Ginsberg, R.N., and Hardie, L.A., 1975. Tidal and storm deposits, northwestern Andros Island, Bahamas. In Ginsburg, R.N. (ed.), Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag, pp. 201–208.

    Google Scholar 

  128. Hagan, G.M., and Logan, B.W., 1975. Prograding tidal-flat sequences: Hutchinson Embayment, Shark Bay, Western Australia. In Ginsburg, R.N. (ed.), Tidal Deposits: A Casebook of Recen Examples and Fossil Counterparts. Berlin: Springer-Verlag, pp. 215–221.

    Google Scholar 

  129. Harrison, S.C., 1975. Tidal flat complex, Delmarva Peninsula, Virginia. In Ginsburg, R.N. (ed.), Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag, pp. 31–38.

    Google Scholar 

  130. Howard, J.D., Frey, R.W., and Reineck, H.-E., 1972. Georgina Coastal Region, Sapelo Island, U.S.A.: Sedimentology and biology. VIII Conclusions. Senckenbergiana marit. 4: 217–222.

    Google Scholar 

  131. Jackson, J.A., 1997. Glossary of Geology, 4th edn. Alexandria: American Geological Institute.

    Google Scholar 

  132. Johnson, D.P., 1982. Sedimentary facies in an arid zone delta: Gascoyne delta, western Australia. Journal of Sedimentary Petrology, 52: 547–563.

    Google Scholar 

  133. Kendall, C.G.St.C., and Skipwith, Sir Patrick A. d’E., 1968. Recent algal mats of a Persian Gulf Lagoon. Journal of Sedimentary Petrology, 38: 1040–1058.

    Google Scholar 

  134. Klein, G. deV., 1963. Bay of Fundy intertidal zone sediments. Journal of Sedimentary Petrology, 33(4): 844–854.

    Google Scholar 

  135. Klein, G. deV. (ed.), 1976. Holocene Tidal Sedimentation. Stroudsburg: Dowden, Hutchinson and Ross, Inc.

    Google Scholar 

  136. Knight, K.J., and Dalrymple, R.W., 1975. Intertidal sediments from the South Shore of Cobequid Bay, Bay of Fundy, Nova Scotia, Canada. In Ginsburg, R.N. (ed.), Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag, pp. 47–55.

    Google Scholar 

  137. Knox, G.A., 1986. Estuarine Ecosystems: A Systems Approach, Vol. II. Boca Raton: CRC Press, Inc.

    Google Scholar 

  138. Krogel, F., and Flemming, B., 1998. Evidence for temperature-adjusted sediment distributions in the back-barrier tidal flats of the East Frisian Wadden Sea (Southern North Sea). In Alexander, C.R., Davis, R.A., and Henry, Vernon, J. (eds.), Tidalites: Processes and Products. Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  139. Larsonneur, C., 1975. Tidal deposits, Mont Saint-Michele Bay, France. In Ginsburg, Robert N. (ed.), Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag, pp. 21–30.

    Google Scholar 

  140. Owen, M., and Black, J.M., 1990. Waterfowl Ecology. New York: Chapman and Hall.

    Google Scholar 

  141. Postma, H., 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands Journal of Sea Research, 1(1,2): 148–190.

    Google Scholar 

  142. Purser, B.H. (ed.), 1973. The Persian Gulf: Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Berlin: Springer-Verlag.

    Google Scholar 

  143. Reineck, H.-E., 1972. Tidal flats. In Rigby, J.K., and Hamblin, W.K. (eds.), Recognition of Ancient Sedimentary Environments. Society of Economic Paleontologists and Mineralogists, Special Publication No. 16, pp. 146–159.

    Google Scholar 

  144. Reineck, H.-E., 1975. German North Sea Tidal Flats. In Ginsburg, Robert, N. (ed.), Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag.

    Google Scholar 

  145. Reineck, H.-E., and Singh, I.B., 1980. Depositional Sedimentary Environments, 2nd edn. Berlin: Springer-Verlag.

    Google Scholar 

  146. Semeniuk, V., 1981. Sedimentology and the stratigraphic sequence of a tropical tidal flat, north-western Australia. Sedimentary Geology, 29: 195–221.

    Google Scholar 

  147. Semeniuk, V., 1993. The mangrove systems of Western Australia—1993 Presidential Address. Journal Royal Society W.A., 76: 99–122.

    Google Scholar 

  148. Shinn, E.A., 1983. Tidal flats. In Scholle, Peter, A., Bedout, Don, G., and Moore, Clyde, H. (eds.), Carbonate Depositional Environments. Tulsa. The American Association of Petroleum Geologists, pp. 171–210.

    Google Scholar 

  149. Shinn, E.A., Lloyd, R.M., and Ginsburg, R.N., 1969. Anatomy of a modern carbonate tidal-flat, Andros Island, Bahamas. Journal of Sedimentary Petrology, 39(3): 1202–1228.

    Google Scholar 

  150. Sylva, de, D.P., 1975. Nektonic food webs in estuaries. In Cronin, L.E. (ed.), Estuarine Research, Vol. 1, Chemistry, Biology, and the Estuarine System. New York: Academic Press, Inc.

    Google Scholar 

  151. Thompson, R.W., 1968. Tidal Flat Sedimentation on the Colorada River Delta, Northwestern Gulf of California. Boulder: Geological Society of America Memoir 107.

    Google Scholar 

  152. Tomlinson, P.B., 1986. The Botany of Mangroves. Cambridge: Cambridge University Press.

    Google Scholar 

  153. Allen, J.R.L. 1985. Principles of Physical Sedimentology. London-Boston-Sydney: George Allen & Unwin.

    Google Scholar 

  154. Allen, J.R.L., and Duffy, M.J., 1998. Temporal and spatial depositional patterns in the Severn Estuary, southwestern Britain: intertidal studies at spring-neap and seasonal scales, 1991–1993. Marine Geology, 146: 147–171.

    Google Scholar 

  155. Bates, R.L., and Jackson, J.A. (eds.), 1980. Glossary of Geology. Alexandria, VA: American Geological Institute.

    Google Scholar 

  156. Boersma, J.R., and Terwindt, J.H.J., 1981. Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology, 28: 151–170.

    Google Scholar 

  157. Boggs, S., 1995. Principles of Sedimentology and Stratigraphy. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  158. Chen, X., 1998. Changjian (Yangtze) river delta, China. Journal of Coastal Research, 14: 838–858.

    Google Scholar 

  159. Dalrymple, R.W., Makino, Y., and Zaitlin, B.A., 1991. Temporal and spatial patterns of rhythmite deposition on mud flat sedimentation in the macrotidal Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada. In Smith, D.G., Reinson, G.E., Zaitlin, A., and Rahmani, R.A. (eds.), Clastic Tidal Sedimentation. Canadian Society of Petroleum. Geology, Memoir 16, 137–160.

    Google Scholar 

  160. Eisma, D., 1998. Intertidal Deposits—River Mouths, Tidal Flats, and Coastal Lagoons. Boca Raton, FL: CRC Press.

    Google Scholar 

  161. Klein, G. deV., 1976. Holocene Tidal Sedimentation. Stroudesburg: Dowden, Hutchinson & Ross.

    Google Scholar 

  162. Kuecher, G.J., Woodland, B.G., and Broadhurst, F.M., 1990. Evidence of deposition from individual tides and of tidal cycles from the Francies Creek Shale. Sedimentary Geology, 68: 211–221.

    Google Scholar 

  163. Kvale, E.P., Archer, A.W., and Johnson, H.R., 1989. Daily, monthly, and yearly tidal cycles within laminated siltstones of the Masfield Formation of Indiana. Geology, 17: 365–368.

    Google Scholar 

  164. Kvale, E.P., and Archer, A.W., 1990. Tidal deposits associated with low sulfur coals, Brazil FM (Lower Pennsylvanian), Indiana. Journal of Sedimentary Petrology, 60: 563–574.

    Google Scholar 

  165. Li, C., Yang, X., Zhuang, Z., Zian, Q., and Wu, S., 1965. Formation and evolution of the intertidal mudflat. Journal of Shangdong College of Oceanography, 2: 21–31 (in Chinese with Russian abstract).

    Google Scholar 

  166. Li, C., Wang, P., Fan, D., Dang, B., and Li, T., 2000. Open-coast intertidal deposits and the preservation potential of individual lamina: a case study from east-central China. Sedimentology, 47: 1039–1051.

    Google Scholar 

  167. Miller, D.J., and Eriksson, K.A., 1997. Late Mississippian prodeltaic rhythmites in the Appalachian Basin: A hierarchical record of tidal and climatic periodicities. Journal of Sedimentary Research, 67: 653–660.

    Google Scholar 

  168. Reineck, H.E., and Singh, I.B., 1980. Depositional Sedimentary Environments. New York: Springer-Verlag.

    Google Scholar 

  169. Shi, Z., and Chen, J., 1996. Morphodynamics and sediment dynamics on intertidal mudflats in China (1961–94). Continental Shelf Research, 16: 1909–1926.

    Google Scholar 

  170. Tessier, B., 1993. Upper intertidal rhythmites in the Mont-Saint-Michel Bay (NW France): perspectives for paleo-reconstruction. Marine Geology, 110: 355–367.

    Google Scholar 

  171. Tessier, B., and Gigot, P., 1989. A vertical record of different tidal cyclicities: an example from the Miocene Marine Molasse of Digne. Sedimentology, 36: 767–776.

    Google Scholar 

  172. Yang, C., and Nio, S., 1985. The estimation of palaeohydrodynamic processes from subtidal deposits using time-series analysis methods. Sedimentology, 32: 41–57.

    Google Scholar 

  173. Aisiks, E.G., and Zyngierman, I., 1984. The San Jose Gulf tidal power plant, Argentina. Proceedings of ECOR’ 84 & 1st Altern. Ener. Argent. Conf. II, pp. 1–9.

    Google Scholar 

  174. Birman, G., 1994. Prospects of tidal energy generation. Bulletin of N.Y. Academy of Science, pp. 147–149.

    Google Scholar 

  175. Bryden, I.G. et al., 1993–1994. Tidal stream power for the Orkneys and Shetlands? Underwater Technology, 19(4): 7–11.

    Google Scholar 

  176. Bryden, I.G. et al., 1995. An assessment of tidal streams as energy source in the Orkneys and Shetlands. Underwater Technology, 21(2): 21–29.

    Google Scholar 

  177. Ch’iu Hou-Ts’ung, 1958. The building of the Shamen TPP. Tien Chi-Ju Tung-Hsin, 9: 52–56.

    Google Scholar 

  178. Charlier, R.H., 1982. Tidal energy. New York: Van Nostrand-Rheinhold.

    Google Scholar 

  179. Charlier, R.H., 1998. Re-invention or aggorniamento? Tidal power at 30 years. Renewable and Sustainable Energy Review, I(4): 271–289.

    Google Scholar 

  180. Charlier, R.H., 2003. Justainable cogeneration from the tides: bibliography. Renewable & Sustainable Energy Reviews, 7(3): 215–247.

    Google Scholar 

  181. Charlier, R.H., and Justus, J.R., 1993. Ocean Energies. Environmental, Economic and Technological Aspects of Alternative Power Sources. Amsterdam, London, New York, Tokyo: Elsevier Science.

    Google Scholar 

  182. Douma, A., and Stewart, G.D., 1982. Annapolis Straflo turbine will demonstrate Bay of Fundy tidal power concept. Hydro Power Modern Power Systems, I: 53–65.

    Google Scholar 

  183. Gilbert, R., 1982. Retiming with hydrogen. Proceedings of International Conference on New Approaches to Tidal Power, New Bedford N.S. 3: 1–4.

    Google Scholar 

  184. Gorlov, A.M., 1982. Hydropneumatic approach to harnessing tidal power. Proceedings of International Conference New Approaches to Tidal Power (Bedford Institute of Oceanography Dartmouth, NS) 5: 5–11.

    Google Scholar 

  185. Guixiang Li, 1991. Prospects for the resources on the tidal energy development in China. Collection of Oceanographic Works—Haiyang Wenji, 14(1): 128–134.

    Google Scholar 

  186. Hadley, N.H. et al., 1994. Performance of a tidal powered upwelling nursery system for juvenile clams in South Carolina. Journal of Shellfish Research, 13(1): 285.

    Google Scholar 

  187. Hollenstein, M., and Soland, W., 1982. The bulb turbine for the Rance power station. Escher-Wyss News, 54/55.

    Google Scholar 

  188. Khio, S., Shiono, M., and Suzuki, K., 1996. the power generation from tidal current by Darrierus turnines. Renewable Energy, 9(1/4): 1242–1245.

    Google Scholar 

  189. Lee Kwang Soo et al., 1994. A simple analytical model for the design of the tidal power scheme. Ocean Research, 16(2): 111–124.

    Google Scholar 

  190. Rhode, R.J. et al., 1994. Coast analysis of a tidal powered upwelling nursery for juvenile clams in South Carolina. Journal of Shellfish Research, 13(1): 286.

    Google Scholar 

  191. Severn Barrage Committee, 1986. Tidal Power from the Severn. London: Telford.

    Google Scholar 

  192. Sharma, H.R., 1982. India embarks on tidal power. Water Power & Dam Construction, 34(6): 32.

    Google Scholar 

  193. Shuyu Wang, Xigi Su, and Zhiyu Jin, 1991. Exploratory study on the optimum pattern of the tidal power plant. The Ocean Engineer/Haiyand Gongcheny, 9(2): 82–90.

    Google Scholar 

  194. Song,W.O., 1987. Reassessment of Garolim tidal power project. Ocean Research [Korea], 9(1/2): 29–33.

    Google Scholar 

  195. Voyer, M., and Penel, M., 1957. Les calculs de la production d’une usine marémotrice. La Houille Blanche (Conférence Quatrièmes Journées de l’Hydraulique) II: 472–485.

    Google Scholar 

  196. Zhikui Zhu, 1992. Comparison of siltation protection measures in a Chinese tidal power station. In Larsen, P., and Eisenhauer, N. (ed.), Proceedings of 5th International Symposium On River Sedimentation, Karlsruhe 6/10 April 1992. Sediment Management, Vol. 2, pp. 847–852.

    Google Scholar 

  197. Zhuang Ji, 1991. Exploring study of optimum patterns of the tidal power plant. The Ocean Engineer—Haiyang Gongcheng, 9(2): 82–90.

    Google Scholar 

  198. Bruun, P., 1990. Port Engineering. Houston, TX: Gulf Publishing Co.

    Google Scholar 

  199. Bruun, P., and Gerritsen, F., 1960. Stability of Coastal Inlets. Amsterdam: North Holland.

    Google Scholar 

  200. Hicks, D.M., and Hume T.M., 1996. Morphology and size of ebb tidal deltas at natural inlets on open-sea and pocket bay coasts, North Island, New Zealand. Journal of Coastal Research, 12: 47–63.

    Google Scholar 

  201. Hume, T.M., and Herdendorf, C.E., 1992. Factors controlling tidal inlet characteristics on low drift coasts. Journal of Coastal Research, 8: 355–375.

    Google Scholar 

  202. Hume, T.M., and Herdendorf, C.E., 1993. On the use of empirical stability relationships for characterising inlets. Journal of Coastal Research, 9: 413–422.

    Google Scholar 

  203. Jarrett, J.T., 1976. Tidal prism-inlet area relationships. Vicksburg, MS: US Army Corps of Engineers, Coastal Engineering Research Center and Waterways Experimental Station, GITI Report No. 3.

    Google Scholar 

  204. O’Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineer, 1: 738–739.

    Google Scholar 

  205. Walton, T.L., Jr., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. In Proceedings, 15th International Conference on Coastal Engineering. American Society of Civil Engineers, New York, pp. 1919–1937.

    Google Scholar 

  206. Coleman, J.M., and Wright, L.D., 1979. Sedimentation in an arid macro-tidal alluvial river system: Ord River, Western Australia. Journal of Geology, 85: 621–642.

    Google Scholar 

  207. Dalrymple, R.W. et al., 1990. Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River Estuary (Bay of Fundy). Sedimentology, 37: 577–612.

    Google Scholar 

  208. Dalrymple, R.W., Zaitlin, B.R., and Boyd, R., 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology, 63: 1130–1146.

    Google Scholar 

  209. Davies, J.L., 1964. A morphogenic approach to world shorelines. Zeitschrift fur Geomorphologie, 8: 27–42.

    Google Scholar 

  210. Evans, G., 1975. Intertidal flat deposits of the Wash, western margin of the North Sea. In Ginsburg, R.N. (ed.), Tidal Deposits. Springer-Verlag: New York, pp. 13–20.

    Google Scholar 

  211. Fisher, W.L. et al., 1969. Delta Systems in the Exploration for Oil and Gas, a Research Colloquium. Texas University Bureau of Economic Geology.

    Google Scholar 

  212. Galloway, W.E., 1975. Process framework for describing the morphological and stratigraphic evolution of deltaic depositional systems. In Broussard, M.L. (ed.), Deltas. 2nd edn. Houston, TX: Houston Geological Society, pp. 87–98.

    Google Scholar 

  213. Hayes, M.O., 1975. Morphology of sand accumulation in estuaries. In Cronin, L.E. (ed.), Estuarine Research, Vol. 2. New York: Academic Press, pp. 3–22.

    Google Scholar 

  214. Hayes, M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In Leatherman, S. P. (ed.), Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico. New York: Academic Press, pp. 1–27.

    Google Scholar 

  215. Kim, Y.H. et al., 1999. Holocene transgressive stratigraphy of a macrotidal flat in the southeastern Yellow Sea: Gomso Bay, Korea. Journal of Sedimentary Research, 69: 328–337.

    Google Scholar 

  216. Knight, R.J., and Dalrymple, R.W., 1975. Intertidal sediments from the south shore of Cobequid Bay, Bay of Fundy, Nova Scotia, Canada. In Ginsburg, R.N. (ed.), Tidal Deposits. New York: Springer-Verlag, pp. 47–56.

    Google Scholar 

  217. Price, W.A., 1955. Development of Shorelines and Coasts: Department of Ocean. Project 63, Texas A&M University.

    Google Scholar 

  218. Thompson, R.W., 1968. Tidal Flat Sedimentation on the Colorado River Delta, Northwestern Gulf of California. Geological Society of America Memoir 107.

    Google Scholar 

  219. Yeo, R.K., and Risk, M.J., 1981. The sedimentology, stratigraphy, and preservation of intertidal deposits in the Minas Basin system, Bay of Fundy. Journal of Sedimentary Petrology, 51: 245–260.

    Google Scholar 

  220. Cartwright, D.E., 1999. Tides—a scientific history. Cambridge: Cambridge University Press.

    Google Scholar 

  221. Emery, K.O., and Aubrey, D.G., 1991. Sea Levels. Land Levels, and Tide Gauges. New York: Springer Verlag.

    Google Scholar 

  222. IOC, 1985 and 1994. Manual on Sea-Level Measurement and Interpretation. Intergovernmental Oceanographic Commission Manuals and Guides No. 14, Vol. 1 (1985) and Vol. 2 (1994).

    Google Scholar 

  223. IOC, 1993. Joint LAPSO-IOC workshop on sea level measurements and quality control. Intergovernmental Oceanographic Commission, Workshop Report No. 81.

    Google Scholar 

  224. IOC, 1997. Global Sea Level Observing System (GLOSS) Implementation Plan 199. Intergovernmental Oceanographic Commission, Technical Series No. 50.

    Google Scholar 

  225. Observatoire de Paris (ed.), 1675. Extrait du Journal d’ltalie contenant quelques avertissements pour observer les différens périodes de la marée; avec la description and la figure de la machine dont il est parlé. Journal des Sçavans, du 22 avril 1675. Tome 2176, pp. 65–67.

    Google Scholar 

  226. Neilan, R.E., Van Scoy, P.A., and Woodworth, P.L. (eds.), 1998. Workshop on methods, for monitoring sea level: GPS and tide gauge benchmark monitoring. GPS altimeter calibration. In Proceedings of the Workshop Organized by the IGS and PSMSL, Pasadena, March 17–18, 1997.

    Google Scholar 

  227. Pirazzoli, P.A., 1996. Sea-Level Changes. The Last 20000 Years. Chichester: John Wiley & Sons.

    Google Scholar 

  228. Pugh, D.T., 1987. Tides, Surges and Mean Sea Level: A Handbook for Engineers and Scientists. Chichester: John Wiley & Sons.

    Google Scholar 

  229. Charlier, R.H. and Menanteau, L., 1998. The saga of tide mills. Renewable and Sustainable Energy Review, 1(3): 1–39.

    Google Scholar 

  230. Creek, H., 1952. Tidal mill near Boston. Civil Engineering 22: 840–841.

    Google Scholar 

  231. Gorlov, A.M., 1982. Hydropneumatic approach to harnessing tidal power. New approach. Proceedings of Tidal Power Conference [New Bedford, NS, Canada], 4: 1–5.

    Google Scholar 

  232. Wailes, R., 1941. Tide mills in England and Wales. Junior Institute of Engineering, Journal and Record of Transactions, 51: 91–114.

    Google Scholar 

  233. Cartwright, D.E., 1999. Tides: A Scientific History. Cambridge: Cambridge University Press. UK, 292 pages.

    Google Scholar 

  234. Cartwright, D.E., and Tayler, R.J., 1971. New computations of the tidegenerating potential. Geophysical Journal of the Royal Astronomical Society, 23: 45–74.

    Google Scholar 

  235. Doodson, A.T., 1921. The harmonic development of the tide-generating potential. Proceedings of the Royal Society A, 100: 305–329.

    Google Scholar 

  236. Foreman, M.G.G., and Henry, R.F., 1989. The harmonic analysis of tidal model time series. Advances in Water Resources, 12(3): 109–120.

    Google Scholar 

  237. Munk, W.H., and Cartwright, D.E., 1966. Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society A, 259: 533–581.

    Google Scholar 

  238. Parker, B.B. (ed.), 1991. Tidal Hydrodynamics. New York: John Wiley & Sons.

    Google Scholar 

  239. Parker, B.B., Davies, A.M., and Xing, J., 1999. Tidal height and current prediction. In Mooers, C.N.K. (ed.), Coastal Ocean Prediction. Coastal and Estuarine Studies, American Geophysical Union. 56, 277–327

    Google Scholar 

  240. Platzman, George, 1971. Ocean tides and related waves. Lectures in Applied Math, 14: 239–291.

    Google Scholar 

  241. Pugh, D.T., 1987. Tides, Surges, and Mean Sea Level. New York: John Wiley & Sons.

    Google Scholar 

  242. Schureman, P., 1958. Manual of Harmonic Analysis and Prediction of Tides. S.P. 98 (Revised 1940 edn with corrections. Washington, DC: Coast and Geodetic Survey, US Department of Commerce.

    Google Scholar 

  243. Abraham, B., and Ledolter, J., 1983. Statistical Methods for Forecasting. New York: John Wiley and Sons, Inc.

    Google Scholar 

  244. Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19: 716–723.

    Google Scholar 

  245. Anderson, O.D., 1975. Time-Series Analysis and Forecasting: The Box-Jenkins Approach. London: Butterworths.

    Google Scholar 

  246. Armstrong, J.S., 2001. Principles of Forecasting: A Handbook for Researchers and Practitioners. Boston, MA: Kluwer Academic Press.

    Google Scholar 

  247. Bendat, J.S., and Piersol, A.G., 1993. Engineering Applications of Correlation and Spectral Analysis, 2nd edn. New York: John Wiley and Sons, Inc.

    Google Scholar 

  248. Bloomfield, P., 1976. Fourier Analysis of Time Series: An Introduction. New York: John Wiley and Sons, Inc.

    Google Scholar 

  249. Booij, B., Ris, R.C., and Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, 104(C4): 7649–7666.

    Google Scholar 

  250. Bowermand, B.L., and O’Connell, R.T., 1993. Time Series and Forecasting: An Applied Approach, 3rd edn. N. Scituate, MA: Duxbury Press.

    Google Scholar 

  251. Box, G.E.P., and Jenkins, G.M., 1970. Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day.

    Google Scholar 

  252. Box, G.E.P., and Jenkins, G.M., 1976. Time Series Analysis Forecasting and Control 2nd edn. San Francisco, CA: Holden-Day.

    Google Scholar 

  253. Box, G.E.P., and Pierce, D.A., 1970. Distribution of the residual autocorrelations in autoregressive integrated moving average models. Journal of the American Statistical Association, 65: 1509–1526.

    Google Scholar 

  254. Box, G.E.P., Jenkins, G.M., and Reinsel, G.C., 1994. Time Series Analysis. Forecasting and Control, 3rd edn. Englewood Cliffs, NJ: Prentice-Hall, Inc.

    Google Scholar 

  255. Brigham, E.O., 1988. The Fast Fourier Transform and its Applications. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  256. Brillinger, D.R., 1975. Time Series: Data Analysis and Theory. New York: Holt, Rinehart, and Winston.

    Google Scholar 

  257. Brillinger, D.R., and Krishnaiah, P.R. (eds.), 1983. Time Series in the Frequency Domain. Handbook of Statistics, Vol. 3. Amsterdam, The Netherlands: Elsevier Science Publishers.

    Google Scholar 

  258. Brockwell, P.J., and Davis, R.A., 1996. Introduction to Time Series and Forecasting. New York: Springer.

    Google Scholar 

  259. Cardone, V.J., 1974. Ocean wave predictions: two decades of progress and future prospects. In Society of Naval Architects and Marine Engineers. Seakeeping 1953–1973/Sponsored by Panel H-7 (Seakeeping Characteristics) at Webb Institute of Naval Architecture Glen Cove, New York, October 28–29, 1973. pp. 5–18.

    Google Scholar 

  260. Cardone, V.J., and Resio, D.T., 1998. An assessment of wave modeling technology. Proceedings of the 5th International Workshop on Wave Hindcasting and Forecasting. Melbourne, FL, pp. 468–495.

    Google Scholar 

  261. Cardone, V.J., and Ross, D.B., 1979. State-of-the-Art wave prediction methods and data requirements. In Earle, M.D., and Malahoff, A. (eds.), Ocean Wave Climate. New York: Plenum Press, pp. 61–91.

    Google Scholar 

  262. Chatfield, C., 1984. The Analysis of Time Series: An Introduction. London and New York: Chapman and Hall.

    Google Scholar 

  263. Cooley, J.W., and Tukey, J.W., 1965. An algorithm for the machine calculation of complex Fourier Series. Mathematics of Computation, 19: 297–301.

    Google Scholar 

  264. Cressie, N.A.C., 1993. Statistics for Spatial Data. New York: John Wiley and Sons, Ltd.

    Google Scholar 

  265. Cunha, C., and Guedes Soares, C., 1999. On the choice of data transformation for modelling time series of significant wave height. Ocean Engineering, 26: 489–506.

    Google Scholar 

  266. Dean, R.G., and Dalrymple, R.A., 1984. Water Wave Mechanics for Engineers and Scientists. Englewood Cliffs, NJ: Prentice-Hall, Inc.

    Google Scholar 

  267. Fuller, W.A., 1996. Introduction to Statistical Time Series, 2nd edn. New York: John Wiley and Sons, Inc.

    Google Scholar 

  268. Goda, Y., 2000. Random Seas and Design of Maritime Structures. Singapore: World Scientific Publishing Co.

    Google Scholar 

  269. Gottman, J.M., 1981. Time-Series Analysis. Cambridge, England: Cambridge University Press.

    Google Scholar 

  270. Guedes Soares, C., 2000. Probabilistic based models for coastal studies. Coastal Engineering, 40: 279–283.

    Google Scholar 

  271. Guedes Soares, C., and Cunha, C., 2000. Bivariate autoregressive models for the time series of significant wave height and mean period. Coastal Engineering, 40: 297–311.

    Google Scholar 

  272. Guedes Soares, C., and Ferreira, A.M., 1995. Analysis of the seasonality in nonstationary time of significant wave height. In Spanos, P.D. (ed.), Computational Stochastic Mechanics. New York: Balkema, pp. 501–521.

    Google Scholar 

  273. Guedes Soares, C., and Ferreira, A.M., 1996. Representation of nonstationary time series of significant wave height with autoregressive models. Probabilistic Engineering Mechanics, 11: 139–148.

    Google Scholar 

  274. Hamilton, J.D., 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

    Google Scholar 

  275. Hannan, E.J., 1980. The estimation of the order of an ARMA process. The Annals of Statistics, 8: 1071–1081.

    Google Scholar 

  276. Hannan, E.J., Krishnaiah, P.R., and Rao, M.M. (eds.), 1985. Time Series in the Time Domain. Handbook of Statistics, Vol. 5. Amsterdam, The Netherlands: Elsevier Science Publishers.

    Google Scholar 

  277. Harvey, A.C., 1993. Time Series Models, 2nd edn. Cambridge, MA: The MIT Press.

    Google Scholar 

  278. Hassleman, K., Munk, W., and MacDonald, G., 1963. Bispectrum of ocean waves. In Rosenblatt, M. (ed.), Time Series Analysis. New York: John Wiley and Sons, Inc., pp. 125–139.

    Google Scholar 

  279. Hegge, B.J., and Masselink, G., 1996. Spectral analysis of geomorphic time series: auto-spectrum. Earth Surface Processes and Landforms, 21: 1021–1040.

    Google Scholar 

  280. Hipel, K.W., 1981. Geophysical model discrimination using the Akaike information criterion. IEEE Transactions on Automatic Control, AC-26(2): 358–378.

    Google Scholar 

  281. Hipel, K.W., and McLeod, A.I., 1977. Advances in Box-Jenkins modeling. 1. Model construction. Journal of Water Resources Research, 13(3): 567–575.

    Google Scholar 

  282. Hipel, K.W., and McLeod, A.I., 1994. Time Series Modelling of Water Resources and Environmental Systems. Amsterdam, The Netherlands: Elsevier Science Publishers.

    Google Scholar 

  283. Hoff, J.C., 1983. A Practical Guide to Box-Jenkins Forecasting. Belmont, CA: Wadsworth, Inc.

    Google Scholar 

  284. Holthuijsen, L.H., Booij, N., and Ris, R.C., 1993. A spectral model for the coastal zone. Proceedings of the 2nd International Symposium on Ocean Wave Measurement and Analysis. New Orleans, LA, pp. 630–641.

    Google Scholar 

  285. Howell, K.B., 2001. Principles of Fourier Analysis. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  286. Jenkins, G.M., 1979. Practical experiences with modelling and forecasting time series. In Anderson, O.D. (ed.), Forecasting. Amsterdam, The Netherlands: North-Holland Publishing Company, pp. 43–166.

    Google Scholar 

  287. Jenkins, G.M., and Watts, D.G., 1969. Spectral Analysis and its Applications. San Francisco, CA: Holden-Day, Inc.

    Google Scholar 

  288. Kanasewich, E.R., 1973. Time Series Analysis in Geophysics. Edmonton, AB: University of Alberta Press.

    Google Scholar 

  289. Kendall, M., 1973. Time-Series. New York: Hafner Press.

    Google Scholar 

  290. Kendall, M., and Ord, J.K., 1990. Time Series, 3rd edn. New York: Oxford University Press.

    Google Scholar 

  291. Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A.E.M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge: Cambridge University Press.

    Google Scholar 

  292. Koopmans, L.H., 1974. The Spectral Analysis of Time Series. New York: Academic Press, Inc.

    Google Scholar 

  293. Köner, T.W., 1988. Fourier Analysis. Cambridge, England: Cambridge University Press.

    Google Scholar 

  294. Kotz, S., and Johnson, N.L. (eds.), 1988. Encyclopedia of Statistical Sciences, Vols 1 to 9. New York: John Wiley and Sons, Inc.

    Google Scholar 

  295. Kruskal, W.H., and Tanur, J.M., 1978. International Encyclopedia of Statistics, Vols 1 and 2. New York: The Free Press.

    Google Scholar 

  296. Lakhan, V.C., 1981. Parameterizing wave heights in simulation models with autocorrelated Rayleigh distributed variates. Journal of the International Association of Mathematical Geology, 13(4): 345–350.

    Google Scholar 

  297. Lakhan, V.C., 1982. Stochastic simulation of wave action on concaveshaped nearshore profiles. Ph.D. thesis. Toronto, ON: University of Toronto.

    Google Scholar 

  298. Lakhan, V.C., 1989. Modeling and simulation of the coastal system. In Lakhan, V.C, and Trenhaile, A.S. (eds.), Applications in Coastal Modeling. Amsterdam, The Netherlands: Elsevier Science Publishers, pp. 17–41.

    Google Scholar 

  299. Lakhan, V.C., 1998. Modeling waves and sediments associated with mudbank formation along the Guyana coast. Berbice, Guyana: Canada Caribbean Research Group, Technical Report No. 38.

    Google Scholar 

  300. Lakhan, V.C., and LaValle, P.D., 1986. Development and testing of a stochastic model to simulate nearshore profile changes. Studies in Marine and Coastal Geography, Halifax, NS: Saint Mary’s University, pp. 61–81.

    Google Scholar 

  301. Lakhan, V.C., and Trenhaile, A.S., 1989. Models and the coastal system. In Lakhan, V.C, and Trenhaile, A.S. (eds.), Applications in Coastal Modeling. Amsterdam, The Netherlands: Elsevier Science Publishers, pp. 1–16.

    Google Scholar 

  302. Lasser, R., 1996. Introduction to Fourier Series. New York: Marcel Dekker, Inc.

    Google Scholar 

  303. LaValle, P.D., Lakhan, V.C., and Trenhaile, A.S., 2000. Short term fluctuations of Lake Erie water levels and the El Niño/Southern Oscillation. The Great Lakes Geographer, 7(1): 1–8.

    Google Scholar 

  304. LaValle, P.D., Lakhan, V.C., and Trenhaile, A.S., 2001. Space-time series modelling of beach and shoreline data. Environmental Modelling and Software, 16: 299–307.

    Google Scholar 

  305. Ljung, G.M., and Box, G.E.P., 1978. On a measure of lack of fit in time series models. Biometrika, 65: 297–303.

    Google Scholar 

  306. Mendel, J.M., 1987. Lessons in Digital Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  307. Monbaliu, J., Padilla-Hernández, R., Hargreaves, J.C., Carretero Labiach, J.C., Luo, W., Sclavo, M., and Günther, H., 2000. The spectral wave model, WAM, adapted for applications with high spatial resolution. Coastal Engineering, 41: 41–62

    Google Scholar 

  308. Montgomery, D.C., Johnson, L.A., and Gardiner, J.S., 1990. Forecasting and Time Series Analysis. 2nd edn. New York: McGraw-Hill, Inc.

    Google Scholar 

  309. Munk, W.H., Snodgrass, F.E., and Tucker, M.J., 1959. Spectra of low frequency ocean waves. Bulletin Scripps Institution of Oceanography, 7(4): 283–362.

    Google Scholar 

  310. Otnes, R.K., and Enochson, L.D., 1976. Applied Time Series Analysis. New York: John Wiley and Sons, Inc.

    Google Scholar 

  311. Pandit, S.M., and Wu, S-M., 1983. Time Series and System Analysis with Applications. New York: John Wiley and Sons, Inc.

    Google Scholar 

  312. Pankratz, A., 1983. Forecasting with Univariate Box-Jenkins Models. New York: John Wiley and Sons, Inc.

    Google Scholar 

  313. Parzen, E., 1977. Multiple time series modeling: determining the order of approximating autoregressive schemes. In Krishnaiah, P. (ed.), Multivariate Analysis IV. Amsterdam, The Netherlands: North-Holland, pp. 283–295.

    Google Scholar 

  314. Pierson, W.J., and Marks, W., 1952. The power spectrum analysis of ocean wave records. Transactions of American Geophysical Union, 33: 834–844.

    Google Scholar 

  315. Pollock, D.S.G., 1999. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. London: Academic Press.

    Google Scholar 

  316. Pourahmadi, M., 2001. Foundations of Time Series Analysis and Prediction Theory. New York: John Wiley and Sons, Inc.

    Google Scholar 

  317. Priestley, M.B., 1981. Spectral Analysis and Time Series, Vols 1 and 2. New York: Academic Press.

    Google Scholar 

  318. Priestley, M.B., 1997. A short history of time series. In Subba Rao, T., Priestley, M.B., and Lessi, O. (eds.), Applications of Time Series Analysis in Astronomy and Meteorology. London: Chapman & Hall, pp. 3–23.

    Google Scholar 

  319. Ramanathan, J., 1998. Methods of Applied Fourier Analysis. Boston, MA: Birkhäser.

    Google Scholar 

  320. Rayner, J.N., 1971. An Introduction to Spectral Analysis. London: Pion Limited.

    Google Scholar 

  321. Ris, R.C., Holthuijsen, L.H., and Booij, B., 1999. A third-generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research, 104(C4): 7667–7681.

    Google Scholar 

  322. Rivero, F.J., Arcilla, A.S., and Carci, E., 1998. An analysis of diffraction in spectral wave models. In Edge, B.L., and Hemsley, J.M. (eds.), Ocean Wave Measurement and Analysis, Vol. 2. Reston, VA: American Society of Civil Engineers, pp. 431–445.

    Google Scholar 

  323. Sachs, L., 1984. Applied Statistics. A Handbook of Techniques, 2nd edn. New York: Springer-Verlag.

    Google Scholar 

  324. Salas, J.D., Delleur, J.W., Yevjevich V., and Lane, W.L., 1980. Applied Modeling of Hydrologic Time Series. Littleton, CO: Water Resources Publications Ltd.

    Google Scholar 

  325. Scheffner, N.W., and Borgman, L.E., 1992. Stochastic time series representation of wave data. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 118(4): 1955–2012.

    Google Scholar 

  326. Schneggenburger, C., Günther, H., and Rosenthal, W., 2000. Spectral wave modelling with non-linear dissipation: validation and applications in a coastal tidal environment. Coastal Engineering, 41: 201–235.

    Google Scholar 

  327. Schuster, A., 1898. On the investigation of hidden periodicities with application to a supposed twenty-six day period of meteorological phenomena. Terrestrial Magnetism, 3: 13–41.

    Google Scholar 

  328. Schwartz,G., 1978. Estimating the dimension of a model. The Annals of Statistics, 6: 461–464.

    Google Scholar 

  329. Shumway, R.H., and Stoffer, D.S., 2000. Time Series Analysis and Its Application. New York: Springer-Verlag New York, Inc.

    Google Scholar 

  330. Slutsky, E., 1937. The summation of random causes as the source of cyclical processes. Econometrica, 5: 105–146.

    Google Scholar 

  331. Spanos, P.D., 1983. ARMA algorithms for ocean wave modelling. Journal of Energy Resources Technology ASME, 105: 300–309.

    Google Scholar 

  332. Stone, M., 1979. Comments on model selection criteria of Akaike and Schwartz. Journal of Royal Statistical Society, Series B, 41: 276–278.

    Google Scholar 

  333. Tucker, M.J., 1991. Waves in Ocean Engineering. New York: Ellis Horwood Limited.

    Google Scholar 

  334. Vandaele, W., 1983. Applied Time Series and Box-Jenkins Models. New York: Academic Press.

    Google Scholar 

  335. Walker, G., 1931. On periodicity in series of related terms. Proceedings of the Royal Society, A 131: 195–215.

    Google Scholar 

  336. Walton, T.L., Jr., 1999. Shoreline rhythmic pattern analysis. Journal of Coastal Research, 15(2): 379–387.

    Google Scholar 

  337. Wei, W.W.S., 1990. Time Series Analysis. Univariate and Multivariate Methods. Redwood City, CA: Addison-Wesley Publishing Company, Inc.

    Google Scholar 

  338. Wold, H., 1938. A Study in the Analysis of Stationary Time-Series. Uppsala, Sweden: Almquist & Wiksell.

    Google Scholar 

  339. Yule, G.U., 1927. On a method of investigating periodicities in distributed series, with special reference to Wöfer’s sunspot numbers. Philosophical Transactions of the Royal Society, A, 226: 267–298.

    Google Scholar 

  340. Brathwaite, C.J.R., 1984. Geology of the Seychelles, In Stoddart, D.R. (ed.), Biogeography and ecology of the Seychelle Islands. The Hague: W. Junk, pp. 17–38.

    Google Scholar 

  341. Cílek, V., 1978. Geological investigations on the beaches of Mahe in the Seychelles Archipelago. Casopsis pro Mineralogii a Geologii, 23(2): 149–157.

    Google Scholar 

  342. Cunningham, F.F., 1968. The significance of Caribbean evidence in the elucidation of tors. Caribbean Journal of Science, 8: 187–197.

    Google Scholar 

  343. Jackson, J.A. (ed.), 1997. Glossary of Geology, 4th edn. Alexandria, VA: American Geological Institute.

    Google Scholar 

  344. Linton, D.L., 1955. The problem of tors. Geographical Journal, 121(4): 470–486.

    Google Scholar 

  345. Mattson, P., Draper, G., and Lewis, J.F., 1990. Puerto Rico and the Virgin Islands. In Dengo, G., and Case, J.E. (eds.), The Caribbean Region, The Geology of North America, H, Boulder: Geological Society of America, pp. 112–120.

    Google Scholar 

  346. Palmer, J., and Neilson, R.A., 1962. The origin of granite tors on Dartmoor, Devonshire. Proceedings of the Yorkshire Geological Society, 33(3): 315–339.

    Google Scholar 

  347. Ratté, C.A., 1986. The Story of the Boulders. Burlington, Vermont: Queen City Printers.

    Google Scholar 

  348. Wagle, B.G., and Hashimi, N.H., 1990. Coastal geomorphology of Mahe Island, Seychelles. International Journal of Remote Sensing, 11(2): 281–287.

    Google Scholar 

  349. Weaver, J.D., 1962. Notes on some erosional features in Virgin Gorda, B. Virgin Islands. Caribbean Journal of Science, 2(4): 159–167.

    Google Scholar 

  350. Cheong, S.-M., and Miller, M.L., 2000. Power and tourism: a Foucauldian observation. Annals of Tourism Research, 27(2): 371–390.

    Google Scholar 

  351. Cicin-Sain, B., and Knecht, R.W., 1998. Integrated Coastal and Ocean Management: Concepts and Principles. Washington, DC: Island Press. (with the assistance of D. Jang and G.W. Fisk).

    Google Scholar 

  352. Clark, J., 1996. Coastal Zone Management Handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  353. Conlin, M.V., and Baum, T. (eds.), 1995. Island Tourism: Management Principles and Practice. New York: John Wiley & Sons.

    Google Scholar 

  354. Corbin, A., 1994 [1988]. The Lure of the Sea: The Discovery of the Seaside 1750–1840. (translated by J. Phelps) New York: Penguin Books.

    Google Scholar 

  355. Cordell, H.K., Teasley, J., Super, G., Bergstrom, J.C., and McDonald, B., 1997. Outdoor Recreation in the United States: Results from the National Survey on Recreation and the Environment. Athens, GA: US Forest Service and the Department of Agriculture and Applied Economics, University of Georgia.

    Google Scholar 

  356. Csikszentmihalyi, M., 1975. Play and intrinsic rewards. Journal of Humanistic Psychology, 15(3): 41–63.

    Google Scholar 

  357. Csikszentmihalyi, M., 1990. Flow: The Psychology of Optimal Experience. New York: Harper Perennial.

    Google Scholar 

  358. Edwards, F., (ed.), 1988. Environmentally Sound Tourism in the Caribbean. Calgary: The University of Calgary Press.

    Google Scholar 

  359. Environmental Protection Agency (EPA), 1995. National Demand for Water Based Recreation. Washington, DC: EPA.

    Google Scholar 

  360. Freire, P., 1999 [1970]. Pedagogy of the Oppressed, Revised edn. New York: Continuum.

    Google Scholar 

  361. Godsman, J., 2000. 2001 Outlook for the Cruise Industry. White paper presented at the 2000 TIA [Travel Industry Association] Marketing Outlook Forum. (October 25–28, 2000) New York: Nationa Geographic Traveler.

    Google Scholar 

  362. Grenier, D., Kaae, B.C., Miller, M.L., and Mobley, R.W., 1993. Ecotourism, landscape architecture and urban planning. Landscape and Urban Planning, 25: 1–16.

    Google Scholar 

  363. Gunn, C.A., 1979. Tourism Planning (2nd edition). New York: Crane, Russak.

    Google Scholar 

  364. Gunn, C.A., 1988. Vacationscape: Designing Tourist Regions. New York: Van Nostrand Reinhold.

    Google Scholar 

  365. Hadley, N., 2001. Cooperative tourism management of midway atoll national wildlife refuge: planning, assessment, and strategy. Tourism, 49(3): 189–202.

    Google Scholar 

  366. Hern, A., 1967. The Seaside Holiday: The History of the English Seaside Resort. London: The Cresset Press.

    Google Scholar 

  367. Houston, J.R., 1995. Beach nourishment. Coastal Forum, Shore and Beach, 64(1): 21–24.

    Google Scholar 

  368. Houston, J.R., 1996. International tourism and US beaches. Coastal Forum, Shore and Beach, 64(2): 3–4.

    Google Scholar 

  369. Leopold, A., 1949. A Sand County Almanac and Sketches Here and There. New York: Oxford University Press.

    Google Scholar 

  370. Lockhart, D.G., and Drakakis-Smith, D. (eds.), 1997. Island Tourism: Trends and Prospects. New York: Pinter.

    Google Scholar 

  371. Manning-Sanders, R., 1951. Seaside England. London: B.T. Batsford.

    Google Scholar 

  372. Mathieson, A., and Wall, G., 1982. Tourism: Economic, Physical, and Social Impacts. New York: John Wiley & Sons.

    Google Scholar 

  373. McGoodwin, J.R., 1986. The tourism-impact syndrome in developing coastal communities: a Mexican case. Coastal Zone Management Journal, 14(1/2): 131–146.

    Google Scholar 

  374. McIntosh, R.W., and Goeldner, C.R., 1990. Tourism: Principles, Practices, Philosophies, 6th edn. New York: John Wiley & Sons.

    Google Scholar 

  375. Miller, M.L., and Auyong, J. 1991a. Coastal zone tourism: a potent force affecting environment and society. Marine Policy, 15: 75–99.

    Google Scholar 

  376. Miller, M.L., and Auyong, J. (eds.) 1991b. Proceedings of the 1990 Congress on Coastal and Marine Tourism: A Symposium and Workshop on Balancing Conservation and Economic Development (Volumes I and II). Newport, OR: National Coastal Resources Research and Development Institute.

    Google Scholar 

  377. Miller, M.L., and Auyong, J. (eds.), 1998a. Proceedings of the 1996 World Congress on Coastal and Marine Tourism: Experiences in Management and Development. Seattle: Washington Sea Grant Program and the School of Marine Affairs, University of Washington and Oregon Sea Grant College Program, Oregon State University.

    Google Scholar 

  378. Miller, M.L., and Auyong, J., 1998b. Remarks on tourism terminologies: Anti-tourism, mass tourism, and alternative tourism. In Miller, M.L., and Auyong, J. (eds.), Proceedings of the 1996 World Congress on Coastal and Marine Tourism: Experiences in Management and Development. Washington Sea Grant Program and the School of Marine Affairs, University of Washington and Oregon Sea Grant College Program, Oregon State University, pp. 1–24.

    Google Scholar 

  379. Miller, M.L., and Ditton, R., 1986. Travel, tourism, and marine affairs. Coastal Zone Management Journal, 14(1/2): 1–19.

    Google Scholar 

  380. Monroe, M.C. (ed.), 1999. What Works: A Guide to Environment Education and Communication Projects for Practitioners and Donors. Gabriola Island, British Columbia: New Society Publishers.

    Google Scholar 

  381. Murphy, P.E., 1985. Tourism: A Community Approach. New York: Methuen.

    Google Scholar 

  382. National Marine Manufacturers Association, 2000. Boating 2000: Facts and Figures at a Glance. Chicago, IL: NMMA.

    Google Scholar 

  383. Orams, M. 1999. Marine Tourism: Development, Impacts and Management. New York: Routledge.

    Google Scholar 

  384. Pearce, D. 1989. Tourist Development, 2nd edn. New York: John Wiley & Sons.

    Google Scholar 

  385. Ritchie, J.R., and Goeldner, C.R., (eds.), 1987. Travel, Tourism, and Hospitality Research: A Handbook for Managers and Researchers. New York: John Wiley & Sons.

    Google Scholar 

  386. Sowman, M., 1987. A procedure for assessing recreational carrying capacity for coastal resort areas. Landscape and Urban Planning, 14(4): 331–344.

    Google Scholar 

  387. Stankey, G., Cole, D., Lucas, R., Peterson, M., and Fissell, S., 1985. The Limits of Acceptable Change (LAC) system for wilderness planning. Seattle: US Department of Agriculture, Technical Report INT-176.

    Google Scholar 

  388. Stebbins, R.A., 1992. Amateurs, Professionals, and Serious Leisure. Montreal: McGill-Queen’s University Press.

    Google Scholar 

  389. Travel Industry Association of America (TIA), 1998. Travel and Tourism Congressional District Economic Impact Study. Washington, DC: TIA and US Department of Commerce.

    Google Scholar 

  390. Travel Industry Association of America (TIA), 2001. Impact of Travel on State Economies 1999. Washington, DC: TIA.

    Google Scholar 

  391. United Nations Environment Programme (UNEP), 1992. Sustainable tourism development. UNEP Industry and Environment, 15(3–4): 1–96.

    Google Scholar 

  392. US Federal Agencies (with ocean-related programs), 1998. Year of the Ocean Discussion Papers. Washington, DC: US Department of Commerce (NOAA).

    Google Scholar 

  393. US Travel and Tourism Administration, 1994. Impact of International Visitor Spending On State Economies. Washington, DC: US Department of Commerce.

    Google Scholar 

  394. Volgenau, G., 2000. The Plog survey: Our favorite places. The Seattle Times. Travel Section K, pg. 6 (Sunday, 16 January).

    Google Scholar 

  395. Waters, S. (ed.), 1997. Travel Industry World Yearbook—The Big Picture 1996–97, Vol. 40. Spencertown, NY: Travel Industry Publishing Inc.

    Google Scholar 

  396. Waters, S. (ed.), 2001. Travel Industry World Yearbook—The Big Picture 2001, Vol. 44. Spencertown, NY: Travel Industry Publishing Inc.

    Google Scholar 

  397. World Commission on Environment and Development, 1987. Our Common Future (“The Brundtland Report”). New York: Oxford University Press.

    Google Scholar 

  398. World Conservation Union (IUCN), the United Nations Environment Programme (UNEP), and the World Wide Fund for Nature (WWF), 1990. Caring for the World: A Strategy for Sustainability. (Second Draft). Gland: IUCN.

    Google Scholar 

  399. World Tourism Organization (WTO), 1996. Compendium of Travel 1989–1996. Madrid: WTO.

    Google Scholar 

  400. World Tourism Organization (WTO), 2001. Tourism Highlights 2001. Madrid: WTO.

    Google Scholar 

  401. World Travel and Tourism Council (WTTC), 1995. Agenda 21 for the Travel and Tourism Industry: Towards Environmentally Sustainable Development. London: WTTC, Progress Report No. 1.

    Google Scholar 

  402. Ahmad, Y.F., 1982. Environmental Guidelines for Coastal Tourism. Nairobi: UNEP Environmental Management Guidelines, No. 6.

    Google Scholar 

  403. Baud-Bovy, M., and Lawson, F., 1998. Tourism and Recreation: Hatndbook of Planning and Design. Oxford: Architectural Press.

    Google Scholar 

  404. Beer, A.R., 1990. Environmental Planning for Site Development. London: E & FN Spon.

    Google Scholar 

  405. Bird, E., 1993. Geomorphological aspects of surfing in Victoria, Australia. In Wong, P.P. (ed.), Tourism vs Environment: the Case for Coastal Areas. Dordrecht: Kluwer Academic Press, pp. 11–18.

    Google Scholar 

  406. Bird, E., 2000. Coastal Geomorphology: An Introduction. Chichester: John Wiley, Chichester.

    Google Scholar 

  407. Domores, M., 2001. Conceptualizing state-controlled resort islands for an environment-friendly development of tourism: the Maldivian experience. Singapore Journal of Tropical Geography, 22: 122–137.

    Google Scholar 

  408. Gunn, C.A., 1988. Vacationscape: Designing Tourist Regions, 2nd edn. New York: Van Nostrand Reinhold.

    Google Scholar 

  409. Inskeep, E., 1991. Tourism Planning: An Integrated and Sustainable Development Approach. New York: Van Nostrand Reinhold.

    Google Scholar 

  410. Mauritius National Climate Committee, 1998. A Climate Change Action Plan. Mauritius.

    Google Scholar 

  411. Mieczkowski, Z., 1990. World Trends in Tourism and Recreation. New York: Peter Lang.

    Google Scholar 

  412. Mimura, N., and Harasawa, H. (eds.), 2000. Data Book of Sea-Level Rise. Ibaraki: Centre for Global Environmental Research.

    Google Scholar 

  413. Nordstrom, K.F., 2000. Beaches and Dunes of Developed Coasts. Cambridge: Cambridge University Press.

    Google Scholar 

  414. Pearce, D., 1995. Tourism Today: A Geographical Analysis. 2nd edn. Harlow: Longman Scientific & Technical.

    Google Scholar 

  415. Pearce, D.G., and Kirk, R.M., 1986. Carrying capacities for coastal tourism. UNEP Industry and Environment, 9(1): 3–7.

    Google Scholar 

  416. Pickering, H., 1996. Limitations for coastal recreation. In Goodhead, T., and Johnson, D. (eds.), Coastal Recreation Management. London: E & FN Spon, pp. 69–91.

    Google Scholar 

  417. Romeril, M., 1984. Coastal tourism—the experience of Great Britain. UNEP Industry and Environment, 7(1): 4–7.

    Google Scholar 

  418. Short, A.D., 1999. Beach hazards and safety. In Short, A.D. (ed.), Handbook of Beach and Shoreface Morphodynamics. Chichester: John Wiley, pp. 293–304.

    Google Scholar 

  419. Teh, T.S., 2000. Sea level rise implications for coastal and island resorts. In Teh, T.S. (ed.), Islands of Malaysia: Issues and Challenges. Kuala Lumpur: University of Malaya, pp. 297–317.

    Google Scholar 

  420. Tourism Authority of Thailand, 1985. Master Plan for Tourism Development of Ko Samui/Surat Thani. Bangkok: Thailand Institute of Scientific and Technological Research. Unpublished Agency Report.

    Google Scholar 

  421. Tourism Authority of Thailand, 1989. The Study on Potential Tourism Development for the Southern Region of Thailand. Tourism Data: Phuket, Surat Thani/Ko Samui, Songkhla/Hat Yai. Final Report, Vol. 3. Tokyo: Japan International Cooperation Agency. Unpublished Agency Report.

    Google Scholar 

  422. Tourist Development Corporation, Malaysia, 1979. Malaysia’s East Coast: Master Plan Study for the Development of Tourism in the areas of Merang-Besut-Dalam Phu, Rompin-Endau-Mersing. Los Angeles: Pannell Kerr Foster. Unpublished Agency Report.

    Google Scholar 

  423. Turner, L., and Ash, J., 1976. The Golden Hordes: International Tourism and the Pleasure Periphery. New York: St. Martin’s Press.

    Google Scholar 

  424. UNEP/WTO/FEEE (United Nations Environment Programme/World Tourism Organization/Foundation for Environmental Education in Europe), 1996. Awards for Improving the Coastal Environment: the Extample of the Blue Flag. Paris: UNEP.

    Google Scholar 

  425. Viles, H., and Spencer, T., 1995. Coastal Problems: Geomorphology, Ecology and Society at the Coast. London: Edward Arnold.

    Google Scholar 

  426. Walton, J.K., 1997. The seaside resorts of Western Europe, 1950–1939. In Fisher, S. (ed.), Recreation and the Sea. Exeter: University of Exeter Press, pp. 36–56.

    Google Scholar 

  427. Wong, P.P., 1990. The geomorphological basis of beach resort sites—some Malaysian examples. Ocean and Shoreline Management, 13: 127–147.

    Google Scholar 

  428. Wong, P.P., 1991. Coastal Tourism in Southeast Asia. Manila: International Center for Living Aquatic Resources Management.

    Google Scholar 

  429. Wong, P.P., 1999. Adaptive use of a rock coast for tourism—Mactan Island, Philippines. Tourism Geographies, 1: 226–243.

    Google Scholar 

  430. Wong, P.P., 2000. Coastal tourism in Southeast Asia: research from the environmental perspective. In Chon, K.S. (ed.), Tourism in Southeast Asia: A New Direction. New York: Haworth Hospitality Press, pp. 107–121.

    Google Scholar 

  431. Abecassis, F., Matias, M.F., Reis de Carvalho, J.J., and Vera-Cruz, D., 1962. Methods of determining sand and silt movement along the coast, in estuaries and in maritime rivers. Laboratório Nacional de Engenharia Civil Technical Paper No. 186. Lisbon, Portugal: Ministério das Obras Públicas.

    Google Scholar 

  432. Allen, J.R., and Nordstrom, K.F., 1977. Beach form changes in the lee of groins at Sandy Hook, New Jersey. In Proceedings of the Coastal Sediments’ 77, American Society of Civil Engineers, pp. 33–47.

    Google Scholar 

  433. Blackley, M.W.L., and Heathershaw, A.D., 1982. Wave and tidal current sorting of sand on a wide surf zone beach. Marine Geology, 49: 345–356.

    Google Scholar 

  434. Boon, J.D., 1968. Trend surface analysis of sand tracer distributions on a carbonate beach, Bimini, B.W.I. Journal of Geology, 76: 71–87.

    Google Scholar 

  435. Boon, J.D., 1970. Quantitative analysis of beach sand movement, Virginia Beach, Virginia. Sedimentology, 17: 85–103.

    Google Scholar 

  436. Chapman, D.M., and Smith, A.W., 1977. Methodology of a large scale sand tracer experiment. In Proceedings of the 3rd Australian Conference on Coastal and Ocean Engineering, pp. 185–189.

    Google Scholar 

  437. Ciavola, P., Taborda, R., Ferreira, Ó., and Dias, J.A., 1997a. Field measurements of longshore sand transport and control processes on a steep meso-tidal beach in Portugal. Journal of Coastal Research, 13: 1119–1129.

    Google Scholar 

  438. Ciavola, P., Taborda, R., Ferreira, Ó., and Dias, J.A., 1997b. Field observations of sand-mixing depths on steep beaches. Marine Geology, 141: 147–156.

    Google Scholar 

  439. Ciavola, P., Dias, N., Ferreira, Ó., Taborda, R., and Dias, J.M.A., 1998. Fluorescent sands for measurements of longshore transport rates: a case study from Praia de Faro in southern Portugal. Geo-Marine Letters, 18: 49–57.

    Google Scholar 

  440. Cooper, N.J., King, D.M., and Hooke, J.M., 1996. Collaborative research studies at Elmer Beach, West Sussex, UK. In Taussik, J., and Mitchell, J. (eds.), Partnership in Coastal Zone Management. Cardigan, UK: Samara Publishing Limited, pp. 369–376.

    Google Scholar 

  441. Corbau, C., Howa, H., Tessier, B., de Resseguier, A., and Chamley, H., 1994. Evaluation du transport sédimentaire sur une plage macrotidale par traçage fluorescent, Dunkerque Est, France. Compte, Rendus Académie des Sciences de Paris, 319: 1503–1509.

    Google Scholar 

  442. Duane, D.B., and James, W.R., 1980. Littoral transport in the surf zone elucidated by an eulerian sediment tracer experiment. Journal of Sedimentary Petrology, 50: 929–942.

    Google Scholar 

  443. Farinato, R.S., and Kraus, N.C., 1981. Spectrofluorometric determination of sand tracer concentrations. Journal of Sedimentary Petrology, 51: 663–665.

    Google Scholar 

  444. Heathershaw, A.D., and Carr, A.P., 1977. Measurements of sediment transport rates using radioactive tracers. In Proceedings of Coastal Sediments’ 77, American Society of Civil Engineers, pp. 399–416.

    Google Scholar 

  445. Ingle, J.C., 1966. The Movement of Beach Sand. Amsterdam: Elsevier

    Google Scholar 

  446. Inman, D.L., Zampol, J.A., White, T.E., Hanes, D.M., Waldorf, B.W., and Kastens, K.A., 1980. Field measurements of sand motion in the surf zone. In Proceedings of the 17th International Coastal Engineering Conference, American Society of Civil Engineers, pp. 1215–1234.

    Google Scholar 

  447. Kidson, C., and Carr, A.P., 1971. Marking beach materials for tracing experiments. In Steers, J.A. (ed.), Introduction to Coastline Development. Basingstoke, UK: MacMillan, pp. 69–93.

    Google Scholar 

  448. Knoth, J.S., and Nummedal, D., 1977. Longshore sediment transport using fluorescent tracers. In Proceedings of Coastal Sediments’ 77, American Society of Civil Engineers, pp. 383–398.

    Google Scholar 

  449. Komar, P.D., 1977. Selective longshore transport rates of different grain-size fractions within a beach. Journal of Sedimentary Petrology, 47: 1444–1453.

    Google Scholar 

  450. Komar, P.D., and Inman, D.L., 1970. Longshore sand transport on beaches. Journal of Geophysical Research, 75: 5514–5527.

    Google Scholar 

  451. Kraus, N.C., 1985. Field experiments on vertical mixing of sand in the surf zone. Journal of Sedimentary Petrology, 55: 3–14.

    Google Scholar 

  452. Kraus, N.C., Isobe, M., Igarashi, H., Sasaki, T.O., and Horikawa, K., 1982. Field experiments on longshore sand transport in the surf zone. In Proceedings of the 18th Coastal Engineering Conference, American Society of Civil Engineers, pp. 970–988.

    Google Scholar 

  453. Madsen, O.S., 1987. Use of tracers in sediment transport studies. In Proceedings of Coastal Sediments’ 87, American Society of Civil Engineers, pp. 424–435.

    Google Scholar 

  454. Pedreros, R., Howa, H.L., and Michel, D., 1996. Applications of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology, 135: 35–49.

    Google Scholar 

  455. Pinto, J.R.C., Dias, J.M.A., Fernandes, S.P., Ferreira, Ó., Silva, A.V., and Taborda, R., 1994. Automatic system for tagged sand detection. Gaia, 8: 161–164.

    Google Scholar 

  456. Sherman, D.J., Nordstrom, K.F., Jackson, N.L., and Allen, J.R., 1994. Sediment mixing-depths on a low-energy reflective beach. Journal of Coastal Research, 10: 297–305.

    Google Scholar 

  457. Taborda, R., Ferreira, Ó., Dias, J.M.A., and Moita, P., 1994. Field observations of longshore sand transport in a high energy environment. In de Carvalho, S., and Gomes, V. (eds.), Proceedings of Littoral 94. Lisbon, Portugal: EUROCOAST Portugal, pp. 479–487.

    Google Scholar 

  458. Voulgaris, G., Simmonds, D., Michel, D., Howa, H., Collins, M.B., and Huntley, D.A., 1998. Measuring and modelling sediment transport on a macrotidal ridge and runnel beach: an intercomparison. Journal of Coastal Research, 14: 315–330.

    Google Scholar 

  459. Yasso, W.E., 1965. Fluorescent tracer particle determination of the size-velocity relation for the foreshore sediment transport, Sandy Hook, New Jersey. Journal of Sedimentary Petrology, 34: 989–993.

    Google Scholar 

  460. Yasso, W.E., 1966. Formulation and use of fluorescent tracers coatings in sediment transport studies. Sedimentology, 6: 287–301.

    Google Scholar 

  461. Zenkovitch, V.P., 1960. Fluorescent substances as tracers for studying the movements of sand on the sea bed. The Dock and Harbour Authority, 40: 280–283.

    Google Scholar 

  462. Zenkovitch, V.P., and Boldyrev, V.L., 1965. Alongshore sediment streams and methods of their study. In Proceedings of the 11th Congress of the International Association for Hydraulic Research, Volume 5. Leningrad, USSR: International Association for Hydraulic Research, pp. 139–148.

    Google Scholar 

  463. Adey, W.H., and Vassar, J.M., 1975. Colonization, succession and growth rates of tropical crustose coralline algae (Rhodophyta, Cryptonemiales). Phycologia, 14: 55–69.

    Google Scholar 

  464. Emery, K.O., 1962. Marine geology of Guam. US Geological Survey Professional Paper 403-B.

    Google Scholar 

  465. Kelletat, D., 1989. Zonality of rocky shores. In Bird, E.C.F., and Kelletat, D. (eds.), Zonality of Coastal Geomorphology and Ecology. Essener Geographische Arbeiten, 18: 1–29.

    Google Scholar 

  466. Kelletat, D., 1995. Atlas of coastal geomorphology and zonality. Journal of Coastal Research, 13 (Special issue): 286pp.

    Google Scholar 

  467. Kelletat, D., and Zimmerman, L., 1991. Verbreitung und Formtypen rezenter und subrezenter organischer Gesteinsbildungen an den Küsten Kretas. Essener Geographische Arbeiten, 23: 163p.

    Google Scholar 

  468. Borlase, W., 1755. Letter to the Rev Charles Lytteton. Philosophical Transaction of the Royal Society of London, 49: 373–378.

    Google Scholar 

  469. Borlase, W., 1758. Observations on the Islands of Scilly. (Reprinted 1966, Frank Graham, Newcastle upon Tyne.)

    Google Scholar 

  470. Dawson, A.G., and Shi, S., 2000. Tsunami deposits. Pure and Applied Geophysics, 157: 875–897.

    Google Scholar 

  471. Harbitz, C.B., 1992. Model simulations of tsunami generated by the Storegga Slides. Marine Geology, 105: 1–21.

    Google Scholar 

  472. Moreira, V.F., 1985. Seismotectonics of Portugal and its adjacent area in the Atlantic. Tectonophysics, 117: 85–96.

    Google Scholar 

  473. Myles, D., 1985. The Great Waves, Tsunami. New York: McGraw Hill.

    Google Scholar 

  474. Nisbet, E.G., and Piper, D.J.W., 1998. Giant submarine landslides. Nature, 392: 329–330.

    Google Scholar 

  475. Tinti, S., and Maramai, A., 1996. Catalogue of tsunamis generated in Italy and in Côte d’Azur, France: a step towards a unified catalogue of tsunamis in Europe. Annali Di Geofisica, XXXIX(6): 1253–1299.

    Google Scholar 

  476. Young, R.W., and Bryant, T., 1992. Catastrophic wave erosion on the southeastern coast of Australia: impact of the Lanai Tsunami ca. 105ka. Geology, 20: 199–202.

    Google Scholar 

Cross-references

  1. Bioerosion

    Google Scholar 

  2. Cliffs, Lithology versus Erosion Rates

    Google Scholar 

  3. Coastal Climate

    Google Scholar 

  4. Coastal Hoodoos

    Google Scholar 

  5. Coastal Wind Effect

    Google Scholar 

  6. Desert Coasts

    Google Scholar 

  7. Honeycomb Weathering

    Google Scholar 

  8. Notches

    Google Scholar 

  9. Shore Platforms

    Google Scholar 

  10. Weathering in the Coastal Zone

    Google Scholar 

Cross-references

  1. Changing Sea Levels

    Google Scholar 

  2. Coastal Subsidence

    Google Scholar 

  3. Coastline Changes

    Google Scholar 

  4. Faulted Coasts

    Google Scholar 

  5. Isostasy

    Google Scholar 

  6. Physical Models

    Google Scholar 

  7. Seismic Displacement

    Google Scholar 

  8. Submerging Coasts

    Google Scholar 

  9. Uplift Coasts

    Google Scholar 

Cross-references

  1. Archaeological Site Location, Effect of Sea-Level Changes

    Google Scholar 

  2. Beach Ridges

    Google Scholar 

  3. Cheniers

    Google Scholar 

  4. Eolian Processes

    Google Scholar 

  5. Late Quaternary Marine Transgression

    Google Scholar 

  6. Offshore Sand Banks and Linear Sand Ridges

    Google Scholar 

Cross-references

  1. Estuaries

    Google Scholar 

  2. Mangroves, Ecology

    Google Scholar 

  3. Mangroves, Geomorphology

    Google Scholar 

  4. Muddy Coasts

    Google Scholar 

  5. Ria

    Google Scholar 

  6. Salt Marsh

    Google Scholar 

  7. Tidal Flats

    Google Scholar 

  8. Vegetated Coasts

    Google Scholar 

Cross-references

  1. Altimeter Surveys, Coastal Tides and Shelf Circulation

    Google Scholar 

  2. Changing Sea Levels

    Google Scholar 

  3. Coastal Changes, Gradual

    Google Scholar 

  4. Coastal Subsidence

    Google Scholar 

  5. Eustasy

    Google Scholar 

  6. Geodesy

    Google Scholar 

  7. Geographic Information Systems

    Google Scholar 

  8. Sea-Level Change During the Last Millennium

    Google Scholar 

  9. Tide Gauges

    Google Scholar 

  10. Tides

    Google Scholar 

Cross-references

  1. Barrier Islands

    Google Scholar 

  2. Beach Processes

    Google Scholar 

  3. Bioerosion

    Google Scholar 

  4. Classification of Coasts (see Holocene Coastal Geomorphology)

    Google Scholar 

  5. Estuaries

    Google Scholar 

  6. Littoral

    Google Scholar 

  7. Microtidal Coasts

    Google Scholar 

  8. Rock Coast Processes

    Google Scholar 

  9. Sandy Coasts

    Google Scholar 

  10. Tidal Flats

    Google Scholar 

  11. Tides

    Google Scholar 

  12. Wave-Dominated Coasts

    Google Scholar 

Cross-references

  1. Bars

    Google Scholar 

  2. Barrier Islands

    Google Scholar 

  3. Bypassing at Littoral Drift Barriers

    Google Scholar 

  4. Coasts, Coastlines, Shores, and Shorelines

    Google Scholar 

  5. Longshore Sediment Transport

    Google Scholar 

  6. Shore Protection Structures

    Google Scholar 

  7. Spits

    Google Scholar 

  8. Tidal Prism

    Google Scholar 

  9. Tide-Dominated Coasts

    Google Scholar 

  10. Wave-and-Tide Dominated Coasts

    Google Scholar 

  11. Wave-Dominated Coasts

    Google Scholar 

Cross-references

  1. Bay Beaches

    Google Scholar 

  2. Coastal Sedimentary Facies

    Google Scholar 

  3. Endogenic and Exogenic Factors

    Google Scholar 

  4. Hydrology of Coastal Zone

    Google Scholar 

  5. Mangroves, Ecology

    Google Scholar 

  6. Mangroves, Geomorphology

    Google Scholar 

  7. Muddy Coasts

    Google Scholar 

  8. Ripple Marks

    Google Scholar 

  9. Salt Marsh

    Google Scholar 

  10. Tidal Creeks

    Google Scholar 

  11. Tidal Flats, Open Ocean Coasts

    Google Scholar 

  12. Tides

    Google Scholar 

  13. Vegetated Coasts

    Google Scholar 

Cross-references

  1. Asia, Eastern, Coastal Geomorphology

    Google Scholar 

  2. Coastal Lakes and Lagoons

    Google Scholar 

  3. Deltas

    Google Scholar 

  4. Tidal Environments

    Google Scholar 

  5. Tidal Flats

    Google Scholar 

  6. Tides

    Google Scholar 

  7. Waves

    Google Scholar 

Cross-references

  1. Engineering Applications of Coastal Geomorphology

    Google Scholar 

  2. Microtidal Coasts

    Google Scholar 

  3. Tidal Environments

    Google Scholar 

  4. Tidal Prism

    Google Scholar 

  5. Tide-Dominated Coasts

    Google Scholar 

  6. Tide Mill

    Google Scholar 

  7. Tides

    Google Scholar 

  8. Wave Power

    Google Scholar 

Cross-references

  1. Estuaries

    Google Scholar 

  2. Instrumentation (see Beach and Nearshore Instrumentation)

    Google Scholar 

  3. Tidal Environments

    Google Scholar 

  4. Tidal Flats

    Google Scholar 

  5. Tidal Power

    Google Scholar 

  6. Tide-Dominated Coasts

    Google Scholar 

  7. Tide Gauges

    Google Scholar 

  8. Tides

    Google Scholar 

Cross-references

  1. Barrier Islands

    Google Scholar 

  2. Deltas

    Google Scholar 

  3. Estuaries

    Google Scholar 

  4. Tidal Environments

    Google Scholar 

  5. Tides

    Google Scholar 

  6. Wave-and-Tide Dominated Coasts

    Google Scholar 

  7. Wave-Dominated Coasts

    Google Scholar 

Cross-references

  1. Altimeter Surveys, Coastal Tides and Shelf Circulation

    Google Scholar 

  2. Changing Sea Levels

    Google Scholar 

  3. Coastal Climate

    Google Scholar 

  4. Coastal Currents

    Google Scholar 

  5. Geodesy

    Google Scholar 

  6. Global Positioning Systems

    Google Scholar 

  7. Greenhouse Effect and Global Warming

    Google Scholar 

  8. Storm Surge

    Google Scholar 

  9. Submerging Coasts

    Google Scholar 

  10. Tectonics and Neotectonics

    Google Scholar 

  11. Tidal Datums

    Google Scholar 

  12. Tides

    Google Scholar 

  13. Uplift Coasts

    Google Scholar 

Cross-references

  1. Polders

    Google Scholar 

  2. Tidal Creeks

    Google Scholar 

  3. Tidal Power

    Google Scholar 

  4. Tidal Prism

    Google Scholar 

  5. Tides

    Google Scholar 

Cross-references

  1. Altimeter Surveys, Coastal Tides and Shelf Circulation

    Google Scholar 

  2. Coastal Currents

    Google Scholar 

  3. Meteorologic Effects on Coasts

    Google Scholar 

  4. Sea-Level Changes During the Last Millennium

    Google Scholar 

  5. Sea-Level Datum

    Google Scholar 

  6. Storm Surges

    Google Scholar 

  7. Tidal Environments

    Google Scholar 

  8. Tidal Inlets

    Google Scholar 

  9. Tidal Prism

    Google Scholar 

  10. Tide Gauges

    Google Scholar 

Cross-references

  1. Coastal Modeling and Simulation

    Google Scholar 

  2. Numerical Modeling

    Google Scholar 

  3. Simple Beach and Surf Zone Models

    Google Scholar 

  4. Surf Modeling

    Google Scholar 

  5. Wave Climate

    Google Scholar 

Cross-references

  1. Boulder Beaches

    Google Scholar 

  2. Caribbean Islands, Coastal Ecology and Geomorphology

    Google Scholar 

  3. Coastal Hoodoos

    Google Scholar 

  4. Indian Ocean Islands, Coastal Ecology and Geomorphology

    Google Scholar 

  5. Tourism, Criteria for Coastal Sites

    Google Scholar 

  6. Weathering in the Coastal Zone

    Google Scholar 

Cross-references

  1. Aquaculture

    Google Scholar 

  2. Beach Use and Behaviors

    Google Scholar 

  3. Carrying Capacity in Coastal Areas

    Google Scholar 

  4. Coastal Zone Management

    Google Scholar 

  5. Demography of Coastal Populations

    Google Scholar 

  6. Economic Value of Beaches

    Google Scholar 

  7. Environmental Quality

    Google Scholar 

  8. Human Impacts on Coasts

    Google Scholar 

  9. Marine Parks

    Google Scholar 

  10. Surfing

    Google Scholar 

  11. Tourism, Criteria for Coastal Sites

    Google Scholar 

Cross-references

  1. Bay Beaches

    Google Scholar 

  2. Coral Reef Islands

    Google Scholar 

  3. Classification of Coasts (see Holocene Coastal Geomorphology)

    Google Scholar 

  4. Cliffed Coasts

    Google Scholar 

  5. Headland-Bay Beach

    Google Scholar 

  6. Human Impact on Coasts

    Google Scholar 

  7. Indian Ocean Islands, Coastal Ecology and Geomorphology

    Google Scholar 

  8. Lifesaving and Beach Safety

    Google Scholar 

  9. Natural Hazards

    Google Scholar 

  10. Pacific Ocean Islands, Coastal Geomorphology

    Google Scholar 

  11. Rating Beaches

    Google Scholar 

  12. Rock Coasts Processes

    Google Scholar 

  13. Sandy Coasts

    Google Scholar 

  14. Sea-Level Rise, Effect

    Google Scholar 

  15. Setbacks

    Google Scholar 

  16. Shore Protection Structures

    Google Scholar 

  17. Small Islands

    Google Scholar 

  18. Surfing

    Google Scholar 

  19. Tourism and Coastal Development

    Google Scholar 

  20. Water Quality

    Google Scholar 

Cross-references

  1. Beach and Nearshore Instrumentation

    Google Scholar 

  2. Beach Nourishment

    Google Scholar 

  3. Beach Sediment Characteristics

    Google Scholar 

  4. Depth of Disturbance

    Google Scholar 

  5. Engineering Applications of Coastal Geomorphology

    Google Scholar 

  6. Longshore Sediment Transport

    Google Scholar 

  7. Reflective Beaches

    Google Scholar 

  8. Rhythmic Patterns

    Google Scholar 

  9. Shore Protection Structures

    Google Scholar 

Cross-references

  1. Algal Rims

    Google Scholar 

  2. Bioconstruction

    Google Scholar 

  3. Bioherms and Biostromes

    Google Scholar 

  4. Notches

    Google Scholar 

Cross-references

  1. Coastal Changes, Rapid

    Google Scholar 

  2. Coastal Sedimentary Facies

    Google Scholar 

  3. Global Vulnerability Analysis

    Google Scholar 

  4. Mass Wasting

    Google Scholar 

  5. Natural Hazards

    Google Scholar 

  6. Seismic Displacement

    Google Scholar 

  7. Storm Surge

    Google Scholar 

  8. Waves

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this entry

Cite this entry

Mustoe, G. et al. (2005). T. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_19

Download citation

Publish with us

Policies and ethics