Skip to main content

Relationship between chemical structure and activity or mode of action of microbicides

  • Reference work entry
  • First Online:
  • 1962 Accesses

1 2.1 Introduction

Microbicides for preventing the biodeterioration of materials and thus preserve their value as long as possible have been developed formely more often empirically, however, today more often by design, because of greater knowledge and understanding of relationships between chemical structure and activity and mode of action of microbicides (Franklin and Snow, 1989).

Within groups of chemically related substances it is possible to correlate changes in biological activity with variations in chemical structure respectively in structural elements, or variations in chemical and physical properties. The chemical biology of the microbial cell is extremely complex, however. The chemist stands opposite large molecular systems and tries to solve the problem by assuming that only a small bounded part of a system has structure which interacts with structural (toxophoric) elements of microbicides. The resort to such abstraction allows to predict antimicrobial effectiveness of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    *

    see Part Two — Microbicide data

References

  1. Adroer, N., Casas, C., de Mas, C. and Sola, C., 1990. Mechanism of formaldehyde biodegradation by Pseudomans putida. Appl. Microbiol. Biotechnol. 33, 217–220.

    Article  CAS  Google Scholar 

  2. Albert, A., 1968. Selective toxicity. In: The Physiological Basis of Therapy. 5th edn., Chapman & Hall, London.

    Google Scholar 

  3. Albert, A. S., Rubber, R., Goldacre, R. and Blafour, R., 1947. The influence of chemical constitution on antibacterial activity. Part III. A study of 8-hydroxychinoline. British Journal of Experimental Pathology 28, 69–87.

    CAS  Google Scholar 

  4. Bergethon, P. R., 1998. The Physical Basis of Biochemistry. The Foundations of Molecular Biophysics. Springer, New York.

    Google Scholar 

  5. Bloomfield, S. F. and Uso, E. E., 1985. The antibacterial properties of sodium hypochlorite and sodium dichloroisocyanurate as hospital disinfectants. J. Hospit. Infect. 6, 20–30.

    Article  CAS  Google Scholar 

  6. Chandler, C. S. and Segel, I. H., 1978. Mechanism of antimicrobial action of pyrithione: Effects on membrane transport, ATP levels and protein synthesis. Antimicrobial Agents Chemother. 14, 60–68.

    Article  CAS  Google Scholar 

  7. Collier, P. J., Ramsey, A., Waigh, R. D., Douglas, K. T., Austin, P. and Gilbert, P., 1990. Chemical reactivity of some isothiazolone biocides. Journal of Applied Bacteriology 69, 578–584.

    Article  CAS  Google Scholar 

  8. Cooney, J. J. and Felix, J. A., 1972. Inhibition of cladosporium resinae in hydrocarbon-water systems by pyridinethiones. International Biodeterioration Bulletin 8, 59–63.

    CAS  Google Scholar 

  9. Corbett, S. R., Wright, K. and Bailli, A. C., 1984. In: The Biochemical Mode of Action of Pesticides. Academic Press, London.

    Google Scholar 

  10. Crow, D. W. and Leonard, N. J., 1965. 3-Isothiazolone-cis-3-thiocyanoacrylamide equilibria. Journal of Organic Chemistry 30, 2660–2665.

    Article  CAS  Google Scholar 

  11. Denyer, S. P., 1995. Mechanism of action of antibacterial biocides. International Biodeterioration & Biodegradation 36, 227–245.

    Article  CAS  Google Scholar 

  12. Diehl, M. A. and Chapman, J. S., 1999. Association of the biocide 5-chloro-2-methyl-isothiazol-3-one with Pseudomonas aeruginosa and Pseudomonas fluorescens. International Biodeterioration & Biodegradation 44, 191–199.

    Article  CAS  Google Scholar 

  13. Franklin, T. J. and Snow, G. A., 1989. Biochemistry of antimicrobial action, 4th edn. Chapman & Hall, London

    Book  Google Scholar 

  14. Gadher, P., Mercer, E. I., Baldwin, W. C. and Wiggins, T. E., 1983. A comparison of the potency of some fungicides as inhibitors of sterol 14demethylation. Pesticides Biochem. Physiol. 19, 1–10.

    Article  CAS  Google Scholar 

  15. Gorman, S. P., Scott, E. M. and Russel, A. D., 1980. Antimicrobial, uses and mechanism of action of glutaraldehyde. Journal Appl. Bacteriology 48, 161–190.

    Article  CAS  Google Scholar 

  16. Green, F., 2000. Inhibition of decay fungi using cotton cellulose hydrolysis as a model for wood decay. International Biodeterioration & Biodegradation 46, 77–82.

    Article  CAS  Google Scholar 

  17. Kato, N., Yamagami, T., Kitayama, K., Shimao, M. and Sakazawa, O., 1984. Dismutation and cross dismutation of aldehydes and alcohols: aldehyde oxidoreduction by resting cells of Pseudomonas putida F 61-a. J. Biotechnol. 1, 273–295.

    Article  Google Scholar 

  18. Kato, T., 1986. Sterolbiosynthesis in fungi, a target for broad spectrum fungicides. In: Sterolbiosynthesis-inhibitors and Anti-feeding compounds, Springer, BerlinNew York, pp. 1–24.

    Chapter  Google Scholar 

  19. Khattar, M. M., Salt, W. G. and Stratton, R. J., 1988. The influence of pyrithione on the growth of microorganisms. Journal of Appl. Bacteriology 64, 265.

    Article  CAS  Google Scholar 

  20. Lewis, S. N., Miller, G. A., Hausman, M. and Szamborski, E. C., 1971. Isothiazoles: 4-Isothiazolinones. A general synthesis from 3,3′-dithiopropionamides. Journal of Heterocyclic Chemistry 8, 571–580.

    Article  CAS  Google Scholar 

  21. Lucken, R. J., 1966. The fungitoxicity of compounds containing a trichloromethylthio group. J. Agricult. Food Chem. 14, 365–367.

    Article  Google Scholar 

  22. Ludwig, R. A. and Thorn, G. D., 1960. Chemistry and mode of action of dithiocarbamate fungicides. Ado. Pest. Cont. Res. 3, 219–252.

    CAS  Google Scholar 

  23. Miller, G. A., Lewis, N. S. and Weiler, E. D., 1975. US Pat. 3, 914301.

    Google Scholar 

  24. Owens, R. G. and Blaak, G., 1959. Reactions of dichlone and captan with thiols. Contr. Boyce Thompson Inst. 20, 475.

    Google Scholar 

  25. Paulus, W., 1976. Potential aryl-vinyl-ketones. A new class of microbicides with good environmental properties. In: Proceedings of the 3rd International Biodeterioration Symposium, pp. 1063–1073.

    Google Scholar 

  26. Paulus, W. and Genth, H., 1980. N-Aryl-N′-acryloyl-ureides, synthesis and application as microbicides. EP 0023 976 BI.

    Google Scholar 

  27. Paulus, W. and Kühle, E., 1986. Tailoring of microbicides for material protection. The trihalomethylthio group in various microbicides. In: Biodeterioration 6, CAB International, Slough, pp. 79–88.

    Google Scholar 

  28. Paulus, W., 1988. Developments in microbicides for the Protection of Materials. In: Biodeterioration 7, Elsevier Applied Science Publ., London, pp. 1–19.

    Google Scholar 

  29. Paulus, W., 1993a. Surface-active agents. In: Microbicides for the Protection of Materials, Kluwer academic publishers, Dordrecht, NL, pp. 375–400.

    Chapter  Google Scholar 

  30. Paulus, W., 1993b. Azoles. In: Microbicides for the Protection of Materials, Kluwer academic publishers, Dordrecht, NL, pp. 311–320.

    Chapter  Google Scholar 

  31. Power, E.G. and Russel, A. D., 1989. Glutaraldehyde: its association by non-sporing bacteria, rubber, plastic and endoscope. Journal of Applied Bacteriology 67, 329–342.

    Article  CAS  Google Scholar 

  32. Richards, R. M. E. and McBridge, R. J., 1973. Enhancement of benzalkonium chloride and chlorhexidine acetate activity against Pseudomonas aeruginosa by aromatic alkohols. J. Pharm. Science 62, 2035–2037.

    Article  CAS  Google Scholar 

  33. Russel, A. D., 1983. Mechanisms of action of chemical sporicidal and sporistatic agents. Int. J. Pharmaceut., 16, 127–140.

    Article  Google Scholar 

  34. Russel, A. D. and Chopra, I., 1990. Understanding antibacterial action and resistance. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  35. Vanden Bossche, H., 1990. Importance and role of sterols in fungal membranes. In: Biochemistry of Cell Walls and Membranes in Fungi, Springer, Berlin, pp. 135–157.

    Chapter  Google Scholar 

  36. Wölfel, L., Mach, F. and Chattopadhyay, S. P., 1985. Comparative cytological studies on the effect of cetyltrimethyl-ammonium bromide on bacterial cells. Zentralblatt für Mikrobiologie 140, 631–639.

    Google Scholar 

  37. Woodcock, P. M., 1988. Biguanides as industrial biocides. In: Industrial Biocides, John Wiley, Chichester, pp. 19–36.

    Google Scholar 

Download references

Authors

Editor information

Wilfried Paulus

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paulus, W. (2004). Relationship between chemical structure and activity or mode of action of microbicides. In: Paulus, W. (eds) Directory of Microbicides for the Protection of Materials. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2818-0_2

Download citation

Publish with us

Policies and ethics