Skip to main content

History of Nuclear and Radiochemistry

  • Reference work entry
Handbook of Nuclear Chemistry
  • 2202 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 Editors' note: As the reader is certainly aware, the present use of the term ‘atomic weight’ (or ‘chemical atomic mass’ as physicists call it sometimes) is restricted to the meaning: average ‘relative atomic mass’ (in u or amu units) of the element calculated with the natural abundances of its (stable or primordial) isotopes. Were it not anachronistic at this point of the’ story’, the appropriate term would be ‘mass number’ meaning the number of nucleons in the nucleus of the given isotope.

  2. 2.

    2 Editors' note: Nowadays we call it ‘molar mass’ (measured in g/mol units).

  3. 3.

    3 Editors' note: The adjectives short-lived and long-lived refer to the ‘average’ lifetime of a radionuclide. As we will see in Chapter 5, there are two parameters in use for describing such ‘average’ behavior. The one is the ‘mean life’ τ = 1/λ representing the ‘true’ average, being the expected value of the lifetime. The other—more frequently used—such parameter is the half-life T1/2. If, therefore, an unspecified time value is given for a radionuclide, the reader can be sure it is a half-life. The only exception is the single-atom observations of man-made elements (see Chapters 7 through 10 in Volume 2), where the times given usually mean ‘observed lifetimes’ of individual atoms.

  4. 4.

    4 Pauli first suggested the idea in a letter to Lise Meitner and other physicists; he subsequently presented it at a few conferences, but never published it in a refereed journal. In a lecture given in Zürich in 1957 he described the history in some detail, including the text of that first letter (see Pauli 1964).

  5. 5.

    5Editors' note: Some (of our) authors prefer to use the term ‘negatron’ for the negative counterpart of ‘positron’, i.e. for ‘ordinary electron’. From that aspect ‘electron’ (just like β particle) is a collective name for negatrons and positrons together.

  6. 6.

    6 Editors' note: In nuclear science it is still customary to refer to elements with higher atomic numbers as ‘heavier elements’ due to the (almost) monotonic increase of the atomic weight with Z.

  7. 7.

    7 Editors' note: Note, however, that in the Sun itself (and other ‘light’ main-sequence stars) the pp-chain dominates over the CNO-cycle as the carbon-nitrogen cycle is usually referred to (see Subsection 4.2 in Chapter 1, Volume 2, on ‘The Origin of the Chemical Elements’).

  8. 8.

    8 Editors' note: We have, however, included a brief summary of this ‘frontiers’ area (see Chapter 8 on ‘The Standard Model of Elementary Particles’).

References

  • ALVAREZ, L.W., 1937, Nuclear K electron capture, Phys. Rev., 52, 134.

    Article  CAS  Google Scholar 

  • ANGER, H.O., 1958, Scintillation camera, Rev. Sci. Instrum., 29, 27.

    Article  CAS  Google Scholar 

  • ARMBRUSTER, P., 1984, On the production of heavy elements by cold fusion: The elements 106 to 109, Ann. Rev. Nucl. Part. Sci., 35, 135.

    Article  Google Scholar 

  • BARANOV, V.I., KRETSCHMER, S. I., 1935, Verwendung von Lichtplatten mit dicker Emulsionsschicht zur Erforschung der Verteilung radioaktiver Elemente in Naturobjekten, Compt. Rend. Acad. Sci. URSS, 1935 I, 546.

    Google Scholar 

  • BECQUEREL, H., 1896, Sur les radiations émises par phosphorescence, Compt. Rend., 122, 420. Sur les radiations invisibles émises par les corps phosphorescents, Compt. Rend., 122, 501. and subsequent reports in Compt. Rend., 122, pp. 559., 689., 762., 1086.

    CAS  Google Scholar 

  • BERSON, S.E., YALOW, R.S., 1957, Kinetics of reaction between insulin and insulin-binding antibody, J. Clin. Invest., 36, 873.

    Google Scholar 

  • BERTOLINI, G., COCHE, A., (editors), 1968, Semiconductor Detectors (Amsterdam: North-Holland Publ. Co.).

    Google Scholar 

  • BETHE, H.A., 1939, Energy production in stars, Phys. Rev., 55, 434.

    Article  CAS  Google Scholar 

  • BLUMGART, H.L., WEISS, S., 1927, Studies of the velocity of blood flow, II. The velocity of blood flow in normal resting individuals and a critique of the method used, J. Clin. Invest., 4, 16.

    Google Scholar 

  • BODU, R., BOUZIGUES, H., MORIN, N., PFIFFELMANN, J.-P., 1972, Sur l'existence d'anomalies isotopiques rencontrées dans l'uranium du Gabon, Compt. Rend., D275, 1731.

    Google Scholar 

  • BOHR, A., MOTTELSON, B.R., 1953, Collective and individual particle aspects of nuclear structure, Danske Vidensk. Selsk. Mat-fys. Medd., 27, No. 16.

    Google Scholar 

  • BOHR, N., 1913, Constitution of atoms and molecules, I, II, Phil. Mag., 26, pp. 1, 476.

    CAS  Google Scholar 

  • BOHR, N., 1936, Neutron capture and nuclear constitution, Nature, 137, 344.

    CAS  Google Scholar 

  • BOHR, N., KALCKAR, F., 1937, On the transmutation of atomic nuclei by impact of material particles, I. General theoretical remarks, Danske Vidensk. Selsk. Mat.-fys. Medd., 14, No. 10.

    Google Scholar 

  • BOHR, N., WHEELER, J.A., 1939, The mechanism of nuclear fission, Phys. Rev., 56, 426.

    Article  CAS  Google Scholar 

  • BOLTWOOD, B., 1907, On the ultimate disintegration products of the radioactive elements, Am. J. Sci., 23, 77.

    Article  CAS  Google Scholar 

  • BROMLEY, D.A., 1984, The development of heavy-ion nuclear physics, in D.A. Bromley Treatise on Heavy-Ion Science, Vol. 1 New York: Plenum Press) p. 3.

    Google Scholar 

  • BURBIDGE, E.M., BURBIDGE, G.R., FOWLER, W.A., HOYLE, F., 1957, Synthesis of the elements in stars, Rev. Mod. Phys., 29, 547.

    Article  Google Scholar 

  • CALVIN, M., BENSON, A.A., 1949, The path of carbon in photosynthesis, IV. The identity and sequence of the intermediates in sucrose synthesis, Science, 109, 140.

    CAS  Google Scholar 

  • CALVIN, M., HEIDELBERGER, CH., REID, J.C., et al., 1949, Isotopic Carbon—Techniques in Its Measurement and Chemical Manipulation (New York: John Wiley & Sons.

    Google Scholar 

  • CAMERON, A.T., 1910, Radiochemistry (London: J. M. Dent & Sons).

    Google Scholar 

  • CAMPBELL, N.R., WOOD, A., 1906, The radioactivity of the alkali metals, Proc. Cambr. Philos. Soc., 14, 15.

    Google Scholar 

  • CASSEN, B., CURTIS, L., REED, C., LIBBY, R., 1951, Instrumentation for I131 use in medical studies, Nucleonics, 9, No. 2, 46.

    Google Scholar 

  • CHADWICK, J., 1932, The existence of a neutron, Proc. Roy. Soc. A (London), 136, 692.

    CAS  Google Scholar 

  • CHIEWITZ, O., HEVESY, G., 1935, Radioactive indicators in the study of phosphorus metabolism in rats, Nature, 136, 754.

    CAS  Google Scholar 

  • CHRISTIANSEN, J.A., HEVESY, G., LOMHOLT, S., 1924, Recherches, par une méthode radiochimique, sur la circulation du bismuth dans l'organisme, Compt. Rend., 178, 1324.

    CAS  Google Scholar 

  • CLAYTON, D.D., 1983, Principles of Stellar Evolution and Nucleosynthesis, 2nd edition, (Chicago: University of Chicago Press).

    Google Scholar 

  • CLEVELAND, B.T., DAILY, T., DAVIS, R.JR., et al., 1998, Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J., 496, 505.

    Article  CAS  Google Scholar 

  • COCKCROFT, J.D., WALTON, E.T. S., 1930, Experiments with high velocity positive ions, Proc. Roy. Soc. A (London), 129, 477.

    CAS  Google Scholar 

  • COCKCROFT, J.D., WALTON, E.T. S., 1932, Further developments in the method of obtaining high-velocity positive ions, Proc. Roy. Soc. A (London), 136, 619.

    CAS  Google Scholar 

  • CORSON, D.R., MACKENZIE, K.R., SEGRÈ, E., 1940a, Possible production of radioactive isotopes of element 85, Phys. Rev., 57, 459.

    Article  CAS  Google Scholar 

  • CORSON, D.R., MACKENZIE, K.R., SEGRÈ, E., 1940b, Artificially radioactive element 85, Phys. Rev., 58, 672.

    Article  CAS  Google Scholar 

  • CUNNINGHAM, B.B., WERNER, L.B., 1949, The first isolation of plutonium, J. Am. Chem. Soc., 71, 1521.

    Article  CAS  Google Scholar 

  • CURIE, I., JOLIOT, F., 1934, Un nouveau type de radioactivité, Compt. Rend., 198, 254. Séparation chimique des nouveaux radioéléments émetteurs d'électrons positifs, Compt. Rend., 198, 559.

    CAS  Google Scholar 

  • CURIE, I., SAVITCH, P., 1938, Sur les radio-éléments formés dans l'uranium irradié par les neutrons, II, J. Phys. Radium, 9, 355.

    Google Scholar 

  • CURIE, M., 1902, Sur le poids atomique du radium, Compt. Rend., 135, 161.

    CAS  Google Scholar 

  • CURIE, P., CURIE, M.S., 1898, Sur une substance nouvelle radio-active, contenue dans la pechblende, Compt. Rend., 127, 175.

    Google Scholar 

  • CURIE, P., CURIE, M., BÉMONT, G., 1898, Sur une nouvelle substance fortement radio-active contenue dans la pechblende, Compt. Rend., 127, 1215.

    CAS  Google Scholar 

  • CURTIS, L., CASSEN, B., 1952, Speeding up and improving contrast of thyroid scintigrams, Nucleonics, 10, No. 9, 58.

    Google Scholar 

  • D'AGOSTINO, O., 1935, Gazz. Chim. Ital., 65, 1071.

    Google Scholar 

  • DALLMEYER, R.D., 1979, 40Ar/39Ar dating: principles, techniques and applications in orogenic terranes, in E. Jäger, J.C. Hunziker, (editors), Lectures in Isotope Geology (Berlin: Springer-Verlag) p. 77

    Google Scholar 

  • DAMON, P.E., LERMAN, J.C., LONG, A., 1978, Temporal fluctuations of atmospheric 14C: Causal factors and implications, Ann. Rev. Earth Planet. Sci., 6, 457.

    Article  CAS  Google Scholar 

  • DAVIS, R.JR., HARMER, D.S., HOFFMAN, K.C., 1968, Search for neutrinos from the sun, Phys. Rev. Lett., 20, 1205.

    Article  CAS  Google Scholar 

  • DEBIERNE, A., 1899, Sur une nouvelle matière radio-active, Compt. Rend., 129, 593.

    CAS  Google Scholar 

  • DOSTROVSKY, I., FRAENKEL, Z., FRIEDLANDER, G., 1959, Monte Carlo calculations of nuclear evaporation processes, III. Applications to low-energy reactions, Phys. Rev., 116, 683.

    Article  CAS  Google Scholar 

  • ECKELMAN, W.C., RICHARDS, P., 1970, Instant 99mTc DTPA, J. Nucl. Med., 11, 761.

    CAS  Google Scholar 

  • EDDINGTON, A.S., 1926, The source of stellar energy, Nature, 117, Suppl., 25.

    Google Scholar 

  • ELSASSER, W.R., 1933, Sur le principe de Pauli dans les noyaux, I, J. Phys. Radium, 4, 549.

    CAS  Google Scholar 

  • ELSASSER, W.R., 1934, Sur le principe de Pauli dans les noyaux II, III, J. Phys. Radium, 5, pp. 389, 635.

    CAS  Google Scholar 

  • FAJANS, K., 1913, Die Stellung der Radioelemente im Periodischen System, Physik. Z., 14, 136.

    CAS  Google Scholar 

  • FAURE, G., POWELL, J.L., 1972, Strontium Isotope Geology (Berlin: Springer-Verlag).

    Google Scholar 

  • FERMI, E., 1934a, Versuch einer Theorie der β-Strahlen, Z. Phys., 88, 161.

    Article  CAS  Google Scholar 

  • FERMI, E., 1934a, Versuch einer Theorie der β-Strahlen, "Z. Phys., 88, 161.

    Article  CAS  Google Scholar 

  • FERMI, E., 1934b, Possible production of elements of atomic number higher than 92, Nature, 133, 898.

    CAS  Google Scholar 

  • FERMI, E., AMALDI, E., D'AGOSTINO, O., et al., 1934, Artificial radioactivity produced by neutron bombardment, Proc. Roy. Soc. A (London), 146, 483.

    CAS  Google Scholar 

  • FERMI, E., RASETTI, F., 1935, Ricerche sui neutroni lenti, Nuovo Cimento, 12, 201.

    CAS  Google Scholar 

  • FISET, E.O., NIX, J.R., 1972, Calculations of half-lives for superheavy nuclei, Nucl. Phys. A, 193, 647.

    Article  CAS  Google Scholar 

  • FLEROV, G.N., PETRZHAK, K.A., 1940, Spontaneous fission of uranium, Phys. Rev., 58, 89.

    Article  CAS  Google Scholar 

  • FRENKEL, Y., 1936, Ãœber das Festkörpermodell schwerer Kerne, Physik. Z. Sowjetunion, 9, 533.

    CAS  Google Scholar 

  • FRICKE, B., 1975, Superheavy elements. A prediction of their chemical and physical properties, Structure & Bonding, 21, 89.

    Article  CAS  Google Scholar 

  • FRISCH, O.R., 1939, Physical evidence for the division of heavy nuclei under neutron bombardment, Nature, 143, 276.

    CAS  Google Scholar 

  • GAMOW, G.,1928, Zur Quantentheorie des Atomkerns, Z. Phys., 51, 204.

    Article  CAS  Google Scholar 

  • GAMOW, G., 1928, Zur Quantentheorie des Atomkerns, Z. Phys., 51, 204.

    Article  CAS  Google Scholar 

  • GAMOW, G., 1946, Expanding universe and the origin of elements, Phys. Rev., 70, 572.

    Article  CAS  Google Scholar 

  • GEIGER, H., MÃœLLER, W., 1928, Elektronenzählrohr zur Messung schwächster Aktivitäten, Naturwiss., 16, 617.

    Article  CAS  Google Scholar 

  • GEIGER, H., NUTTALL, J.M., 1911, The ranges of the α-particles from various radioactive substances and a relation between range and period of transformation, Phil. Mag., 22, 613.

    CAS  Google Scholar 

  • GENTNER, W., KLEY, W., 1955, Zur geologischen Altersbestimmung nach der Kalium-Argon-Methode, Z. Naturforsch., 10a, 832.

    Google Scholar 

  • GHIORSO, A., HARVEY, B.G., CHOPPIN, G.R., THOMPSON, S. G., GHIORSO, A., SEABORG, G. T., 1950a, Element 97, Phys. Rev., 77, 838., 1955a, New element mendelevium, atomic number 101, Phys. Rev., 98, 1518.

    Google Scholar 

  • GHIORSO, A., THOMPSON, S.G., HIGGINS, G.H., et al., 1955b, New elements einsteinium and fermium, atomic numbers 99 and 100, Phys. Rev., 99, 1048

    Article  CAS  Google Scholar 

  • GHIORSO, A., NITSCHKE, J.M., ALONSO, J.R., et al., 1974, Element 106, Phys. Rev. Lett., 33, 1490

    Article  CAS  Google Scholar 

  • GIESEL, F., 1902, Ãœber Radium und radioaktive Stoffe, Ber. Dtsch. Chem. Ges., 35, 3608.

    CAS  Google Scholar 

  • GLÃœCKAUF, E., FAY, J.W. J., 1936, Direct production of organic compounds containing artificial radio-elements, J. Chem. Soc., 1936, 390.

    Article  Google Scholar 

  • GREEN, J.H., MADDOCK, A.G., 1949, (n,γ) Recoil effects in potassium chromate and dichromate, Nature, 164, 788.

    CAS  Google Scholar 

  • GURNEY, R.W., CONDON, E.U., 1928, Wave mechanics and radioactive disintegration, Nature, 122, 439.

    CAS  Google Scholar 

  • GURNEY, R.W., CONDON, E.U., 1929, Quantum mechanics and radioactive disintegration, Phys. Rev., 33, 127.

    Article  CAS  Google Scholar 

  • HAHN, O., 1922, Ãœber das Uran Z und seine Muttersubstanz, Z. physik. Chem., 103, 461.

    Google Scholar 

  • HAHN, O., 1936, Applied Radiochemistry(Ithaca, NY: Cornell University Press

    Google Scholar 

  • HAHN, O., MEITNER, L., 1918, Die Muttersubstanz des Actiniums, ein neues radioaktives Element von langer Lebensdauer, Physik. Z., 19, 208.

    CAS  Google Scholar 

  • HAHN, O., MEITNER, L., STRASSMANN, F., 1936, Neue Umwandlungs-Prozesse bei Neutronen-Bestrahlung des Urans; Elemente jenseits Uran, Ber. Dtsch. Chem. Ges., 69, 905.

    Google Scholar 

  • HAHN, O., STRASSMANN, F., 1939a, Ãœber den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle, Naturwiss., 27, 11.

    Article  CAS  Google Scholar 

  • HAHN, O., STRASSMANN, F., 1939b, Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung; Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung, Naturwiss., 27, 89.

    Article  CAS  Google Scholar 

  • HAHN, O., STRASSMANN, F., MATTAUCH, J., EWALD, H., 1943, Geologische Altersbestimmung mit der Strontiummethode, Chemiker Ztg., 67, 55.

    CAS  Google Scholar 

  • HAMILTON, J.G., SOLEY, M.H., 1939, Studies in iodine metabolism by the use of a new radioactive isotope of iodine, Am. J. Physiol., 127, 557.

    CAS  Google Scholar 

  • HAMILTON, J.G., SOLEY, M.H., 1940, Studies in iodine metabolism of the thyroid gland in situ by the use of radio-iodine in normal subjects and in patients with various types of goiter, Am. J. Physiol., 131, 135.

    CAS  Google Scholar 

  • HAXEL, O., JENSEN, J.H. D., SUESS, H.E., 1950, Modellmässige Deutung der ausgezeichneten Nukleonenzahlen im Kernbau, Z. Phys., 128, 295.

    Article  CAS  Google Scholar 

  • HERRMANN, G., 2003, Historical reminiscences, in M. Schädel, (editor), The Chemistry of the Superheavy Elements (Dordrecht: Kluwer Acad. Publ.) p. 291.

    Google Scholar 

  • HERRMANN, G., TRAUTMANN, N., 1982, Rapid chemical methods for identification and study of short-lived nuclides, Ann. Rev. Nucl. Part. Sci., 32, 117.

    Article  CAS  Google Scholar 

  • HEVESY, G., 1915, Ãœber den Austausch der Atome zwischen festen und flüssigen Phasen, Physik. Z., 16, 52.

    Google Scholar 

  • HEVESY, G., 1923, Absorption and translocation of lead by plants. A contribution to the application of the method of radioactive indicators to the investigation of the change of substance in plants, Biochem. J., 17, 439.

    CAS  Google Scholar 

  • HEVESY, G., LEVI, H., 1936, The action of neutrons on rare earth elements, Danske Vidensk. Selsk. Mat-fys. Medd., 14, No. 5.

    Google Scholar 

  • HEVESY, G., PANETH, F., 1913, Die Löslichkeit des Bleisulfids und Bleichromats, Z. anorg. Chem., 82, 323.

    Article  Google Scholar 

  • HOFMANN, S., REISDORF, W., MÃœNZENBERG, G., et al., 1982, Proton radioactivity of 151Lu, Z. Phys. A, 305, 111.

    Article  CAS  Google Scholar 

  • HÖNIGSCHMID, O., HOROVITZ, ST., 1914, Sur le poids atomique du plomb de la pechblende, Compt. Rend., 158, 1796.

    Google Scholar 

  • IDO, T., WAN, C-N., CASELLA, V., et al., 1978, Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose, J. Labelled Compd. Radiopharm., 14, 75.

    Google Scholar 

  • IUPAC, 1997, International Union of Pure and Applied Chemistry: Names and symbols of transfermium elements, Pure & Appl. Chem., 69, 2471.

    Google Scholar 

  • JAUNCEY, G.E. M., 1946, The early years of radioactivity, Am. J. Phys., 14, 226.

    Article  CAS  Google Scholar 

  • JONES, A.G., 1995, Technetium in nuclear medicine, Radiochim. Acta, 70/71, 289.

    CAS  Google Scholar 

  • KAMEN, M.D., 1963, Early history of carbon-14, Science, 140, 584.

    Google Scholar 

  • KATZ, J.J., MORSS, L. R., SEABORG, G.T., 1986, Summary and comparative aspects of the actinide elements, in J.J. Katz, G.T. Seaborg, L.R. Morss, (editors), The Chemistry of the Actinide Elements, 2nd edition, (London: Chapman and Hall) p. 1121.

    Google Scholar 

  • KAUFMANN, R., WOLFGANG, R., 1959, Complex nucleon transfer reaction of heavy ions, Phys. Rev. Lett., 3, 232.

    Article  CAS  Google Scholar 

  • KAUFMANN, R., WOLFGANG, R., 1961, Nucleon transfer reactions in grazing collisions of heavy ions, Phys. Rev., 121, 192.

    Article  CAS  Google Scholar 

  • KENNEDY, J.W., SEABORG, G.T., SEGRÈ, E., WAHL, A.C., 1946, Properties of 94 (239), Phys. Rev., 70, 555.

    Article  Google Scholar 

  • KIRSTEN, T., 1978, Tie and the solar system, in S.F. Dermott, (editor), Origin of the Solar System (London: Wiley) p. 267

    Google Scholar 

  • LAWRENCE, E.O., LIVINGSTON, M.S., 1931, The production of high-speed protons without the use of high voltages, Phys. Rev., 38, 834.

    Article  CAS  Google Scholar 

  • LEBOWITZ, E., GREENE, M.W., FAIRCHILD, R., et al., 1975, Thallium-201 for medical use, J. Nucl. Med., 16, 151.

    CAS  Google Scholar 

  • LIBBY, W.F., 1946, Atmospheric helium three and radiocarbon from cosmic radiation, Phys. Rev., 69, 671.

    Article  CAS  Google Scholar 

  • LIBBY, W.F., 1952, Radiocarbon Dating (Chicago: University of Chicago Press).

    Google Scholar 

  • LITHERLAND, A.E., 1980, Ultrasensitive mass spectrometry with accelerators, Ann. Rev. Nucl. Part. Sci., 30, 437.

    Article  CAS  Google Scholar 

  • LIVINGSTON, M.S., BLEWETT, J.P., 1962, Particle Accelerators (New York: McGraw-Hill).

    Google Scholar 

  • MARINSKY, J.A., GLENDENIN, L.E., CORYELL, C.D., 1947, The chemical identification of radioisotopes of neodymium and of element 61,. Am. Chem. Soc., 69, 2781.

    Article  CAS  Google Scholar 

  • MAURETTE, M., 1976, Fossil nuclear reactors, Ann. Rev. Nucl. Sci., 26, 319.

    Article  CAS  Google Scholar 

  • MAYER, M.G., 1950a, Nuclear configurations in the spin-orbit coupling model, I. Empirical evidence, Phys. Rev., 78, 16.

    Article  CAS  Google Scholar 

  • MAYER, M.G., 1950b, Nuclear configurations in the spin-orbit coupling model, II. Theoretical considerations, Phys. Rev.], 78, 2

    Article  CAS  Google Scholar 

  • MCMILLAN, E., 1939, Recoils from uranium activated by neutrons, Phys. Rev., 55, 510.

    Article  CAS  Google Scholar 

  • MCMILLAN, E., ABELSON, P.H., 1940, Radioactive element 93, Phys. Rev., 57, 1185.

    Article  CAS  Google Scholar 

  • MEITNER, L., FRISCH, O.R., 1939, Disintegration of uranium by neutrons: a new type of nuclear reaction, Nature, 143, 239..

    CAS  Google Scholar 

  • MEITNER, L., HAHN, O., STRASSMANN, F., 1937, Ãœber die Umwandlungsreihen des Urans, die durch Neutronenbestrahlung erzeugt werden, Z. Phys., 106, 249.

    Article  CAS  Google Scholar 

  • MELDNER, H., 1966, Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle Hamiltonians, in W. Forsling, C.J. Herrlander, H. Ryde, (editors), Nuclides far off the Stability Line, Proc. Sympos. Lysekil 1966 (Stockholm: Almqvist & Wiksell) p. 593; also Arkiv Fysik 36 (1967) 593.

    Google Scholar 

  • MERRIHUE, C.M., TURNER, G., 1966, Potassium-argon dating by activation with fast neutrons, J. Geophys. Res., 71, 2852.

    CAS  Google Scholar 

  • METROPOLIS, N., BIVINS, R., STORM, M., et al., 1958a, Monte Carlo calculations on intranuclear cascades, I. Low-energy studies, Phys. Rev., 110, 185.

    Article  CAS  Google Scholar 

  • METROPOLIS, N., BIVINS, R., STORM, M., et al., 1958b, Monte Carlo calculations on intranuclear cascades, II. High energy studies and pion processes, Phys. Rev., 110, 204.

    Article  CAS  Google Scholar 

  • MEYER, ST., HESS, V.F., PANETH, F., 1914, Neue Reichweitenbestimmungen an Polonium, Ionium und Actiniumpräparaten, Sitzungsber. Akad. Wiss. Wien, Math.-naturw. Klasse, Abt. IIa, 123, 1459.

    CAS  Google Scholar 

  • MEYER, ST., SCHWEIDLER, E.R. V., 1916, Radioaktivität, 1st edition 1916, 2nd edition 1927, (Leipzig: B. G. Teubner).

    Google Scholar 

  • MOLINSKI, V.I., 1982, A review of 99mTc generator technology, Int. J. Appl. Radiat. Isot., 33, 811.

    Article  CAS  Google Scholar 

  • MOSELEY, H.G. J., 1913, The high-frequency spectra of the elements, I, Phil. Mag., 26, 1024.

    Google Scholar 

  • MOSELEY, H.G. J., 1914, The high-frequency spectra of the elements, II, Phil. Mag., 27, 703.

    CAS  Google Scholar 

  • MÖSSBAUER, R.L., 1958, Kernresonanzfluoreszenz von Gammastrahlung in 191Ir, Z. Phys., 151, 124.

    Article  Google Scholar 

  • MÖSSBAUER, R.L., 1962, Recoilless nuclear resonance absorption, Ann. Rev. Nucl. Sci., 12, 123.

    Article  Google Scholar 

  • MÃœNZENBERG, G., ARMBRUSTER, P., FOLGER, H., et al., 1984, The identification of element 108, Z. Phys. A, 317, 235.

    Article  Google Scholar 

  • MÃœNZENBERG, G., ARMBRUSTER, P., HESSBERGER, F.P., et al., 1982, Observation of one correlated α-decay in the reaction 58Fe on 209Bi → 267109, Z. Phys. A, 309, 89.

    Article  Google Scholar 

  • MÃœNZENBERG, G., HOFMANN, S., HESSBERGER, F.P., et al., 1981, Identification of element 107 by correlation chains, Z. Phys. A, 300, 107.

    Article  Google Scholar 

  • NEUILLY, M., BUSSAC, J., FRÈJAQUES, C., et al., 1972, Sur l'existence dans un passé reculé d'une réaction en chaine naturelle de fissions, dans le gisement d'uranium d'Oklo (Gabon), Compt. Rend., D275, 1847.

    Google Scholar 

  • NIER, A.O., 1935, Evidence for the existence of an isotope of potassium of mass 40, Phys. Rev., 48, 283.

    Article  CAS  Google Scholar 

  • NIER, A.O., 1938, Variations in the relative abundances of the isotopes of common lead from various sources, J. Am. Chem. Soc., 60, 1571.

    Article  CAS  Google Scholar 

  • NILSSON, S.G., "1955, Binding states of individual nucleons in strongly deformed nuclei, Danske Vidensk. Selsk. Mat-fys. Medd., 29, No. 16.

    Google Scholar 

  • NILSSON, S.G., THOMPSON, S.G., TSANG, C.F., Stability of superheavy nuclei and their possible occurrence in nature, Phys. Lett., 28B, 458 (1969).

    Google Scholar 

  • OGANESSIAN, YU.T., ILJINOV, A.S., DEMIN, A.G., TRETYAKOVA, S.P., 1975, Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z > 100, Nucl. Phys. A, 239, 353.

    Article  Google Scholar 

  • PANETH, F.A., REASBECK, P., MAYNE, K.I., 1953, Production by cosmic rays of helium-3 in meteorites, Nature, 172, 200.

    Article  CAS  Google Scholar 

  • PATTERSON, C., 1956, Age of meteorites and the earth, Geochim. Cosmochim. Acta, 10, 230.

    Article  CAS  Google Scholar 

  • PAULI, W., 1964, Zur älteren und neueren Geschichte des Neutrinos, in R. Kronig and V.F. Weisskopf, (editors), Collected Scientific Papers by W. Pauli, Vol. 2, (New York: Interscience Publ.) p. 1313..

    Google Scholar 

  • PEREY, M., 1939a, Sur un élément 87, dérivé de l'actinium, Compt. Rend., 208, 97.

    CAS  Google Scholar 

  • PEREY, M., 1939b, L’élément 87: AcK, dérivé de l'actinium, J. Phys. Radium, 10, 435.

    CAS  Google Scholar 

  • PERRIER, C., SEGRÈ, E., 1937a, Radioactive isotopes of element 43, Nature, 140, 193.

    CAS  Google Scholar 

  • PERRIER, C., SEGRÈ, E., 1937b, Some chemical properties of element 43, J. Chem. Phys., 5, 712.

    Article  CAS  Google Scholar 

  • PERRIN, J., 1919, Matière et lumière. Essai de synthèse de la méchanique chimique, #49: L'évolution des astres, Ann. physique, 11, 89.

    Google Scholar 

  • PETRZHAK, K.A., FLEROV, G.N., 1940, Ãœber die spontane Teilung von Uran, Compt. Rend. Acad. Sci. URSS, 28, 500.

    Google Scholar 

  • PIGGOTT, C.S., 1936, Apparatus to secure core samples from the ocean bottom, Bull. Geol. Soc. Am., 47, 675.

    Google Scholar 

  • POLIKANOV, S.M., DRUIN, V.A., KARNAUKHOV, V.A., et al., 1962, Spontaneous fission with an anomalously short period, Soviet Phys. JETP, 15, 1016.; russ. orig., J. Exptl. Theor. Phys. USSR, 42, 1464.

    Google Scholar 

  • PONTECORVO, B., 1935, Sulle proprietà dei neutroni lenti, Nuovo Cimento, 12, 211.

    Article  CAS  Google Scholar 

  • PRICE, W.J., 1958, Nuclear Radiation Detection (New York: McGraw-Hill), 1st edition 1958, 2nd edition 1964.

    Google Scholar 

  • PUAE, 1955, Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 17 Vols., United Nations, New York 1956.

    Google Scholar 

  • RAVN, H.L., 1979, Experiments with intense secondary beams of radioactive ions, Phys. Rep., 54, 201.

    Article  CAS  Google Scholar 

  • REINES, F., COWAN, C.L., 1953, Detection of the free neutrino, Phys. Rev., 92, 830.

    Article  CAS  Google Scholar 

  • REINES, F., COWAN, C.L., HARRISON, F.B., et al., 1960, Detection of the free antineutrino, Phys. Rev., 117, 159.

    Article  CAS  Google Scholar 

  • RHODES, R., 1986, The Making of the Atomic Bomb (New York: Simon and Schuster).

    Google Scholar 

  • RICHARDS, P., TUCKER, W.D., SRIVASTAVA, S.C., 1982, Technetium-99m: an historical perspective, Int. J. Appl. Radiat. Isot., 33, 793.

    Article  CAS  Google Scholar 

  • RICHARDS, T.W., LEMBERT, M.E., 1914, The atomic weight of lead of radioactive origin, J. Am. Chem. Soc., 36, 1309.

    Google Scholar 

  • RIEDER, W., BRODA, E., ERBER, J., 1950, Dissoziation von Permanganationen durch lokale Energiezufuhr, Monatsh. Chem., 81, 656.

    Article  Google Scholar 

  • ROBERTS, R.B., HAFSTAD, L.R., MEYER, R.C., WANG, P., 1939, The delayed neutron emission which accompanies fission of uranium and thorium, Phys. Rev., 55, 664.

    Article  CAS  Google Scholar 

  • ROSE, H.J., JONES, G.A., 1984, A new kind of natural radioactivity, Nature, 307, 245.

    Article  CAS  Google Scholar 

  • RUBEN, S., KAMENT, M.D., 1940a, Radioactive carbon of long half-life, Phys. Rev., 57, 549.

    Article  CAS  Google Scholar 

  • RUBEN, S., KAMEN, M.D., 1940b, Photosynthesis with radioactive carbon, IV. Molecular weight of the intermediate products and a tentative theory of photosynthesis, J. Am. Chem. Soc., 62, 3451.

    Article  CAS  Google Scholar 

  • RUBEN, S., KAMEN, M.D., 1941, Long-lived radioactive carbon: C14, Phys. Rev., 59, 349.

    Article  CAS  Google Scholar 

  • RUBEN, S., KAMEN, M., HASSID, W.Z., 1940, Photosynthesis with radioactive carbon, II. Chemical properties of the intermediates, J. Am. Chem. Soc., 62, 3443.

    Article  CAS  Google Scholar 

  • RUTHERFORD, E., 1899, Uranium radiation and the electrical conduction produced by it, Phil. Mag., 47, 109.

    CAS  Google Scholar 

  • RUTHERFORD, E., 1906, The mass and velocity of the α particles expelled from radium and actinium, Phil. Mag., 12, 348.

    CAS  Google Scholar 

  • RUTHERFORD, E., 1911, The scattering of α and β particles by matter and the structure of the atom, Phil. Mag., 21, 669.

    CAS  Google Scholar 

  • RUTHERFORD, E., 1919, Collision of α particles with light atoms, IV. An anomalous effect in nitrogen, Phil. Mag., 37, 581.

    CAS  Google Scholar 

  • RUTHERFORD, E., SODDY, F., 1902, The cause and nature of radioactivity, I, II, Phil. Mag., 4, pp. 370, 569.

    CAS  Google Scholar 

  • RUTHERFORD, E., SODDY, F., 1903, Radioactive change, Phil. Mag., 5, 576.

    CAS  Google Scholar 

  • SCHAEFFER, O.A., 1968, Nuclear chemistry of the earth and meteorites, in L. Yaffe, (editor), Nuclear Chemistry, Vol. II, (New York: Academic Press) p. 371.

    Google Scholar 

  • SCHAEFFER, O.A., ZÄHRINGER, J., 1966, Potassium-Argon Dating (Berlin: Springer-Verlag).

    Google Scholar 

  • SCHROEDER, W.U., HUIZENGA, J.R., 1977, Damped heavy-ion collisions, Ann. Rev. Nucl. Sci., 27, 465.

    Article  CAS  Google Scholar 

  • SEABORG, G.T., 1940, Artificial radioactivity, Chem. Revs., 27, 199.

    Article  CAS  Google Scholar 

  • SEABORG, G.T., 1945, The chemical and radioactive properties of the heavy elements, Chem. Eng. News, 23, 2190.

    CAS  Google Scholar 

  • SEABORG, G.T., 1954, Coordination of properties as actinide transition series, in G.T. Seaborg, J.J. Katz, (editors), The Actinide Elements (New York: McGraw-Hill) p. 733.

    Google Scholar 

  • SEABORG, G.T., JAMES, R.A., MORGAN, L.O., 1949a, The new element americium (atomic number 95), in G.T. Seaborg, J.J. Katz, W.M. Manning, (editors), The Transuranium Elements–Research Papers II (New York: McGraw-Hill) p. 1525.

    Google Scholar 

  • SEABORG, G.T., MCMILLAN, E.M., KENNEDY, J.W., WAHL, A.C., 1946a, Radioactive element 94 from deuterons on uranium, Phys. Rev., 69, 366.

    Article  CAS  Google Scholar 

  • SEABORG, G.T., WAHL, A.C., KENNEDY, J.W., 1946b, Radioactive element 94 from deuterons on uranium, Phys. Rev., 69, 367.

    Article  CAS  Google Scholar 

  • SEELMANN-EGGEBERT, W., STRASSMANN, F., 1947, Ãœber die bei der Uranspaltung noch zu erwartenden Bruchstücke, Z. Naturforsch., 2a, 80.

    CAS  Google Scholar 

  • SEGRÈ, E., HALFORD, R.S., SEABORG, G.T., 1939, Chemical separation of nuclear isomers, Phys. Rev., 55, 321.

    Article  Google Scholar 

  • SERBER, R., 1947, Nuclear reactions at high energies, Phys. Rev., 72, 1114.

    Article  CAS  Google Scholar 

  • SIEGEL, J. M., (editor), 1946, Nuclei formed in fission: decay characteristics, fission yields, and chain relationships, J. Am. Chem. Soc., 68, 2411.

    Google Scholar 

  • SILVA, R.J., 1986, Transeinsteinium elements, in J.J. Katz, G.T. Seaborg, L.R. Morss, (editors), The Chemistry of the Actinide Elements, 2nd edition, (London: Chapman and Hall) p. 1085.

    Google Scholar 

  • SKLODOWSKA CURIE, M., 1898, Rayons émis par les composés de l'uranium et du thorium, Compt. Rend., 126, 1101.

    Google Scholar 

  • SOBICZEWSKI, A., GAREEV, F.A., KALINKIN, B.N., 1966, Closed shells for Z > 82 and N > 128 in a diffuse potential well, Phys. Lett., 22, 500.

    Article  CAS  Google Scholar 

  • SODDY, F., 1911, Radioactivity, Ann. Rep. Progress Chem., 7, 285.

    Google Scholar 

  • SODDY, F., 1913a, Intra-atomic charge, Nature, 92, 400.

    Google Scholar 

  • SODDY, F., 1913b, The radio-elements and the periodic law, Chem. News, 107, 97.

    CAS  Google Scholar 

  • SODDY, F., 1975, Radioactivity and Atomic Theory, facsimile reproduction of the Annual Progress Reports on Radioactivity 1904-1920 to the Chemical Society by Frederick Soddy F.R.S., edited byT.T. TRENN, (London: Taylor & Francis).

    Google Scholar 

  • STÖCKLIN, G., PIKE, V.W., (editors), 1993, Radiopharmaceuticals for Positron Emission Tomography, Methodological Aspects (Dordrecht: Kluwer Acad. Publ.).

    Google Scholar 

  • STRASSMANN, F., HAHN, O., 1942, Ãœber die Isolierung und einige Eigenschaften des Elements 93, Naturwiss., 30, 256.

    Article  CAS  Google Scholar 

  • STRUTINSKY, V. M., 1967, Shell effects in nuclear masses and deformation energies, Nucl. Phys. A, 95, 420.

    Article  Google Scholar 

  • SUESS, H.E., UREY, H.C., 1956, Abundances of the elements, Rev. Mod. Phys., 28, 53.

    Article  CAS  Google Scholar 

  • SZILARD, L., CHALMERS, T.A., 1934, Chemical separation of the radioactive element from its bombarded isotope in the Fermi effect, Nature, 134, 462.

    CAS  Google Scholar 

  • THOMPSON, S.G., GHIORSO, A., SEABORG, G.T., 1950a, Element 97, Phys. Rev., 77, 838.

    Article  CAS  Google Scholar 

  • THOMPSON, S.G., STREET, K.JR., GHIORSO, A., SEABORG, G.T., 1950b, Element 98, Phys. Rev., 78, 298.

    Article  CAS  Google Scholar 

  • THOMSON, J.J., 1913, Positive rays of electricity, Nature, 91, 362.

    Google Scholar 

  • TOMLINSON, R.H., DAS GUPTA, A.K., 1953, Use of isotope dilution in determination of geologic age of minerals, Canad. J. Chem., 31, 909.

    Article  CAS  Google Scholar 

  • UREY, H.C., BRICKWEDDE, F.G., MURPHY, G.M., 1932, Hydrogen isotope of mass 2 and its concentration, Phys. Rev., 40, 1.

    Article  CAS  Google Scholar 

  • VAN DE GRAAFF, R.J., COMPTON, K.T., VAN ATTA, L. C., 1933, Electrostatic production of high voltage, Phys. Rev., 43, 149.

    Google Scholar 

  • VON GUNTEN, H.R., 1969, Distribution of mass in spontaneous and neutron-induced fission, Actinide Revs., 1, No. 4, 275.

    Google Scholar 

  • WEIZSÄCKER, C.F. V., 1935, Zur Theorie der Kernmassen, Z. Phys., 96, 431.

    Article  Google Scholar 

  • WEIZSÄCKER, C.F. V., 1937, Ãœber die Möglichkeit eines dualen β-Zerfalls von Kalium, Physik. Z., 38, 623.

    Google Scholar 

  • WETHERILL, G.W., 1971, Of time and the moon, Science, 173, 383.

    CAS  Google Scholar 

  • WETHERILL, G.W., 1975, Radiometric chronology of the early solar system, Ann. Rev. Nucl. Sci., 25, 283.

    Article  CAS  Google Scholar 

  • WILCZYNSKI, J., VOLKOV, V.V., DECOWSKI, P., 1967, Some features of the mechanism of many-neutron-transfer reactions, Sov. J. Nucl. Phys., 5, 672.; russ. orig., Yad. Fiz., 5, 942.

    Google Scholar 

  • WILKINSON, D.H., WAPSTRA, A.H., ULEHLA, I., et al., 1993a, Discovery of the transfermium elements, Report of the Transfermium Working Group of IUPAC and IUPAP, II. Introduction to discovery profiles, Pure & Appl. Chem., 65, 1757.

    Google Scholar 

  • WILKINSON, D.H., WAPSTRA, A. H., ULEHLA, I., ., 1993b, Discovery of the transfermium elements, Report of the Transfermium Working Group of IUPAC and IUPAP, III. Discovery profiles of the transfermium elements, Pure & Appl. Chem., 65, 1764.

    Google Scholar 

  • WILLARD, J.E., 1953, Chemical effects of nuclear transformations, Ann. Rev. Nucl. Sci., 3, 193.

    Article  CAS  Google Scholar 

  • WOLF, A.P., 1960, Labeling of organic compounds by recoil methods, Ann. Rev. Nucl. Sci., 10, 259.

    Article  CAS  Google Scholar 

  • WOLF, A.P., 1964, The reactions of energetic tritium and carbon atoms with organic compounds, Adv. Phys. Organ. Chem., 2, 201.

    Article  CAS  Google Scholar 

  • WOLF, A.P., REDVANLY, C.S., 1977, Carbon-11 and radiopharmaceuticals, Int. J. Appl. Radiat. Isot., 28, 29.

    Article  CAS  Google Scholar 

  • YALOW, R.S., 1978, Radioimmunoassay: a probe for the fine structure of biologic systems, Science, 200, 1236.

    CAS  Google Scholar 

  • YANKWICH, P.E., ROLLEFSON, G.K., NORRIS, T.H., 1946, Chemical forms assumed by C14 produced by neutron irradiation of nitrogenous substances, J. Chem. Phys., 14, 131.

    Article  CAS  Google Scholar 

  • ZVARA, I., CHUBURKOV, YU.T., ZVAROVA, T.S., TSALETKA, R., 1969, Experiments on the chemistry of element 104—kurchatovium, I. Development of a method for studying short-lived isotopes, Sov. Radiochem., 11, 153.; russ. orig., Radiokhim., 11, 154.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

(2003). History of Nuclear and Radiochemistry . In: Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-387-30682-X_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-30682-X_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-1305-8

  • Online ISBN: 978-0-387-30682-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics