Skip to main content

Algorithms for the Recovery of the 3-D Shape of Anatomical Structures from Single X-Ray Images

  • Reference work entry
Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems
  • 569 Accesses

31.1 3.1 Introduction

The recovery of the three-dimensional (3-D) shape of anatomical structures is one of the most important problems in the field of medical imaging as the quantitative, computer-based assessment of such a shape and its changes plays an important role in clinical and research studies on a number of diseases.

A frequently studied class of solutions to this problem consists of performing the regional segmentation of a big enough sequence of tomographic (e.g. magnetic resonance (MR), computed tomography (CT) or echographic) images and stacking the segmented slices (sometimes with interpolation) to obtain volumetric representations of the 3-D shape of the imaged structures (Robb et al., 1983; Robb and Barillot, 1989; Higgins et al., 1990; Ylä-Jääski et al., 1991; Coppini et al., 1992a; Joliot and Mazoyer, 1993). Alternatively, detailed surface representations can be obtained from the boundaries of the structures of interest detected in each slice by means of surface...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    1 It should be noted that, under the hypothesis of a single structure in the scene, the reconstruction of an image representing the density of a structure is actually equivalent to the regional segmentation of a cross section of such a structure and, thus, the reconstruction of several parallel slices is equivalent to instantiating a3-D volumetric shape representation.

  2. 2.

    2 An alternative expression for the potential energy of S is , where k1 and k2 are the principal curvatures of the surface.

  3. 3.

    3 The section are “equatorial”, minimally constrained sections in which maximum recovery errors are to be expected.

  4. 4.

    4 The artifacts in the rendered images are due to corresponding artifacts in the original CT slices caused by lead tooth-fillings.

References

  • S. Amartur, D. Piraino and Y. Takefuji. Optimization neural networks for the segmentation of magnetic resonance images. IEEE Transactions on Medical Imaging 11(2), 1992.

    Google Scholar 

  • A.H. Andersen. Algebraic reconstruction in CT from limited views. IEEE Transactions on Medical Imaging 8(1): 50–55, 1989.

    Article  Google Scholar 

  • H. Azhari, S. Sideman, R. Beyar, E. Grenadier and U. Dinnar. An analytical descriptor of three-dimensional geometry: application to the analysis of the left ventricle shape and contraction. IEEE Transactions on Biomedical Engineering 34(5): 345–355, 1987.

    Article  Google Scholar 

  • Z.D. Bai, P.R. Krishnaiah, C.R. Rao, P.S. Reddy, Y.N. Sun and L.C. Zhao. Reconstruction of the left ventricle from two orthogonal projections. Computer Vision, Graphics, and Image Processing 47: 165–188, 1989.

    Article  Google Scholar 

  • K.J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

    Google Scholar 

  • G. Bilbro, M. White and W. Snyder. Image segmentation with neurocomputers. In: R. Eckmiller and C.v.d. Malsburg (Eds), Neural Computers. Berlin, Springer-Verlag, 1987.

    Google Scholar 

  • L. Brevdo, S. Sideman and R. Beyar. A simple approach to the problem of 3D reconstruction. Computer Vision, Graphics, and Image Processing 37: 420–427, 1987.

    Article  Google Scholar 

  • J.F. Brinkley. Knowledge-driven ultrasonic three-dimensional organ modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(4): 431–441, 1985.

    Article  Google Scholar 

  • R. Calamai, G. Coppini, M. Demi, R. Poli and G. Valli. A computational approach to medical imaging. Journal of Nuclear Medicine and Allied Sciences 34(1): 42–50, 1990.

    Google Scholar 

  • J. Catros and D. Mischeler. An artificial intelligence approach for medical picture analysis. Pattern Recognition Letters 8: 123–130, 1988.

    Article  Google Scholar 

  • L.-W. Chang, H.-W. Chen and J.-R. Ho. Reconstruction of 3D medical images: A nonlinear interpolation technique for reconstruction of 3D medical images. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing 53(4): 382–391, 1991.

    Google Scholar 

  • S.-K. Chang and C.K. Chow. The reconstruction of three-dimensional objects from two orthogonal projections and its application to cardiac cineangiography. IEEE Transactions on Computers 22(1): 18–28, 1973.

    Article  Google Scholar 

  • C.T. Chen, E.C. K. Tsao and W.C. Lin. Medical image segmentation by a constraint satisfaction neural network. IEEE Transaction on Nuclear Science 38(2): 678–686, 1991.

    Article  Google Scholar 

  • I. Cohen, L.D. Cohen and N. Ayache. Using deformable surface to segment 3-D images and infer differential structures. CVGIP: Image Understanding 56(2): 242–263, 1992.

    Article  MATH  Google Scholar 

  • L.D. Cohen. On active contour models and balloons. CVGIP: Image Understanding 53(2): 211–218, 1991.

    Article  MATH  Google Scholar 

  • G. Coppini, M. Demi, R. Poli and G. Valli. An artificial vision system for X-ray images of human coronary trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(2): 156–162, 1993.

    Article  Google Scholar 

  • G. Coppini, R. Poli, M. Rucci and G. Valli. A neural network architecture for understanding 3D scenes in medical imaging. Computer and Biomedical Research 25: 569–585, 1992a.

    Article  Google Scholar 

  • G. Coppini, R. Poli and G. Valli. Methods for medical image understanding. In: Topics on Biomedical Physics, Atti VI Congresso Nazionale dell’Associazione Italiana di Fisica Biomedica, pp. 49–56. Singapore, World Scientific, 1992b.

    Google Scholar 

  • G. Coppini, R. Poli and G. Valli. Recovery of the 3-D shape of the left ventricle from echocardiographic images. IEEE Transactions on Medical Imaging 14(2): 301–317, 1995.

    Article  Google Scholar 

  • R. Courant and H. Hilbert. Methods of Mathematical Physics. Interscience, New York, 1953.

    Google Scholar 

  • T. Darrell, S. Sclaroff and A. Pentland. Segmentation by minimal description. In: IEEE International Conference on Computer Vision III, Osaka, Japan, 1990.

    Google Scholar 

  • R. Deklerck, J. Cornelis and M. Bister. Segmentation of medical images. Image and Vision Computing 11(8): 486–503, 1993.

    Article  Google Scholar 

  • A.C. Dumay, J.J. Gerbrands, F. Zijlstra, H. Minderhoud, C.E. Essed, W.A. Levenbach, P.W. Serruys and J.H. C. Reiber. Three-dimensional reconstruction of myocardial contrast perfusion from biplane cineangiograms. In: E.S. Gelsema and L.N. Kanal (Eds), Pattern Recognition and Artificial Intelligence, pp. 155–168. Elsevier Science, 1988.

    Google Scholar 

  • P. Fua and Y.G. Leclerc. Using 3-dimensional meshes to combine image-based and geometry-based constraints. In: Proceedings of the 3rd European Conference on Computer Vision, number 801 pt 2 in Lecture Notes in Computer Science, p. 281, Stockholm, Sweden.

    Google Scholar 

  • G. Gerig, J. Martin, R. Kikinis, O. Kubler, M. Shenton and F.A. Jolesz. Unsupervised tissue type segmentation of 3D dual-echo MR head data. Image and Vision Computing 10(6): 349–360, 1992.

    Article  Google Scholar 

  • P.H. Heintzen (Ed.). Roentgen-, Cine-and Videodensitometry. Georg Thieme Verlag, Stuttgart, 1971.

    Google Scholar 

  • P.H. Heintzen and J.H. Bürsch (Eds). Roentgen-Video-Techniques. Stuttgart, Georg Thieme Verlag, 1978.

    Google Scholar 

  • W.E. Higgins, N. Chung and E.L. Ritman. Extraction of left-ventricular chamber from 3-D CT images of the hart. IEEE Transactions on Medical Imaging 9(4): 384–395, 1990.

    Article  Google Scholar 

  • J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences 81: 3088–3092, 1984.

    Article  Google Scholar 

  • J. Hopfield and D. Tank. “Neural” computation of decisions in optimization problems. Biological Cybernetics 52: 141–152, 1985.

    MathSciNet  MATH  Google Scholar 

  • J. Hopfield and D. Tank. Computing with neural circuits: a model. Science 233: 625–633, 1986.

    Article  Google Scholar 

  • H.E. Johns. The Physics of Radiology. C.C. Thomas, Springfield, Illinois, USA, 1974.

    Google Scholar 

  • M. Joliot and B.M. Mazoyer. Three-dimensional segmentation and interpolation of magnetic resonance brain image. IEEE Transactions on Medical Imaging 12(2): 269–277, 1993.

    Article  Google Scholar 

  • J. Joseph W. Klingler, C.L. Vaughan, J. Theodore D. Franker and L.T. Andrews. Segmentation of echocardiographic images using mathematical morphology. IEEE Transactions on Biomedical Engineering 35(11): 925–935, 1988.

    Article  Google Scholar 

  • K. Kitamura, J. Tobis and J. Sklansky. Estimating the 3-D skeletons and transverse areas of coronary arteries from biplane angiograms. IEEE Transactions on Medical Imaging 7: 173–187, 1988.

    Article  Google Scholar 

  • C. Klifa and B. Lavayssière. 3D reconstruction using a limited number of projections. In SPIE Vol. 1360 Visual Communications and Image Processing ’90, pp. 443–454, 1990.

    Google Scholar 

  • A.N. Kolmogorov and S.V. Fomin. Elementy teorii funktsij i funktsional’nogo analiza. Nauka, MIR, Moscov, 1980.

    Google Scholar 

  • T. Lei and W. Sewchand. Statistical approach to X-ray CT imaging and its applications in image analysis-part ii: A new stochastic model-based image segmentation technique for X-ray CT image. IEEE Transactions on Medical Imaging 11(1): 62–69, 1992.

    Article  Google Scholar 

  • C. Li, D.B. Goldgof and L.O. Hall. Knowledge-based classification and tissue labeling of MR images of human brain. IEEE Transactions on Medical Imaging 12(4): 740–750, 1993.

    Article  Google Scholar 

  • W. Lin, C. Liang and T. Chen. Improvement on dynamic elastic interpolation technique for reconstructing 3-D objects from serial cross sections. IEEE Transactions on Medical Imaging 9: 71–83, 1990.

    Article  Google Scholar 

  • M.M. Lipschutz. Differential Geometry. McGraw-Hill, New York, 1969.

    MATH  Google Scholar 

  • A. Macovski. Medical Imaging Systems. Prentice Hall, Englewood Cliffs, 1983.

    Google Scholar 

  • G. Manos, A.Y. Cairns, I.W. Ricketts and D. Sinclair. Automatic segmentation of hand-wirst radiographs. Image and Vision Computing 11(2): 100–111, 1993.

    Article  Google Scholar 

  • D. Marr. Vision. W.H. Freeman & Co., New York, 1982.

    Google Scholar 

  • D. Onnasch. A concept for the approximative reconstruction of the form of the right or left ventricle from biplane angiocardiograms. In: P.H. Heintzen and J.H. Bürsch (Eds), Roentgen-Video-Techniques for the Dynamic Studies of Structure and Function of the Heart and Circulation, pp. 235–242. Stuttgart, Georg Thieme Verlag, 1978.

    Google Scholar 

  • M. Özkan, B.M. Dawant and R.J. Maciunas. Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study. IEEE Transactions on Medical Imaging 12(3): 534–544, 1993.

    Article  Google Scholar 

  • C. Pellot, A. Herment, M. Sigelle, P. Horain, H. Maitre and P. Peronneau. A 3D reconstruction of vascular structures from two X-ray angiograms using an adaped simulated annealing algorithm. IEEE Transaction on Medical Imaging 13(1): 48–60, 1994.

    Article  Google Scholar 

  • A. Pentland and S. Sclaroff. Closed-form solution for physically based shape modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 715–729, 1991.

    Google Scholar 

  • T. Poggio, V. Torre and C. Koch. Computational vision and regularization theory. Nature 317: 314–319, 1985.

    Article  Google Scholar 

  • R. Poli, G. Coppini and G. Valli. Recovery of 3-D closed surfaces from sparse data. Computer Vision Graphics and Image Processing: Image Understanding 60(1): 1–25, 1994.

    Article  Google Scholar 

  • R. Poli and G. Valli. Hopfield neural nets for the optimum segmentation of medical images. In: E. Fiesler and R. Beale (Eds), Handbook of Neural Computation, chapter G.5.5. Oxford University Press, 1997a.

    Google Scholar 

  • R. Poli and G. Valli. Shape from radiological density. Computer Vision and Image Understanding 65(3): 361–381, 1997b.

    Article  Google Scholar 

  • S.V. Raman, S. Sakar and K.L. Boyer. Hypothesizing structures in edge-focused cerebral magnetic resonance images using graph-theoretic cycle enumeration. Computer Vision, Graphics, and Image Processing: Image Understanding 57(1): 81–98, 1993.

    Article  Google Scholar 

  • R. Rangayyan, A.P. Dhawan and R. Gordon. Algorithms for limited-view computed tomography: an annotated bibliography and a challenge. Applied Optics 24(23): 4000–4012, 1985.

    Article  Google Scholar 

  • S.P. Raya. Low-level segmentation of 3-D magnetic resonance brain images-a rule-based system. IEEE Transactions on Medical Imaging 9(3): 327–337, 1990.

    Article  Google Scholar 

  • T.R. Reed. Region growing using neural networks. In: H. Wechsler (Ed.), Neural Networks for Perception, Vol. 1, pp. 386–397. Academic Press, San Diego, CA, 1992.

    Google Scholar 

  • S.R. Reuman and D.D. Hoffman. Regularities of nature: the interpretation of visual motion. In: A.P. Pentland (Ed.), From Pixels to Predicates, pp. 201–226. Ablex, Norwood, New Jersey, 1986.

    Google Scholar 

  • R. Robb and C. Barillot. Interactive display and analysis of 3-D medical images. IEEE Transactions on Medical Imaging 8: 217–226, 1989.

    Article  Google Scholar 

  • R. Robb, E. Hoffman, L. Sinak, L. Harris and E. Ritman. High-speed three-dimensional X-ray computed tomography: the dynamic spatial reconstructor. Proceedings of the IEEE 71: 308–319, 1983.

    Article  Google Scholar 

  • A. Rosenfeld and A. Kak. Digital Picture Processing, Vols. 1 and 2. Academic Press, New York, 1982.

    Google Scholar 

  • R.H. Silverman and A.S. Noetzel. Image processing and pattern recognition in ultrasonograms by backpropagation. Neural Networks 3: 593–603, 1990.

    Article  Google Scholar 

  • G.M. Stiel, L.S. G. Stiel, E. Koltz and C.A. Nienaber. Digital flashing tomosynthesis: A promising technique for angiocardiographic screening. IEEE Transactions on Medical Imaging 12(2): 314–321, 1993.

    Article  Google Scholar 

  • D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4): 413–424, 1986.

    Article  Google Scholar 

  • D. Terzopoulos. The computation of visible-surface representations. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4): 417–438, 1988.

    Article  MATH  Google Scholar 

  • D. Terzopoulos, A. Witkin and M. Kass. Symmetry-seeking models and 3D object reconstruction. International Journal of Computer Vision 1(3): 211–221, 1987.

    Article  Google Scholar 

  • J.G. Thomas, R.A. P. II and P. Jeanty. Automatic segmentation of ultrasound images using morphological operators. IEEE Transactions on Medical Imaging 10(2): 180–186, 1991.

    Article  Google Scholar 

  • D.L. Toulson and J.F. Boyce. Segmentation of MR images using neural nets. Image and Vision Computing 10(5): 324–328, 1992.

    Article  Google Scholar 

  • L.V. Tran, R.C. Bahn and J. Sklansky. Recontructing the cross sections of coronary arteries from biplane angiograms. IEEE Transactions on Medical Imaging 11(4): 517–529, 1992.

    Article  Google Scholar 

  • T. Wang, X. Zhuang and X. Xing. Robust segmentation of noisy images using a neural network model. Image and Vision Computing 10(4): 233–240, 1992.

    Article  Google Scholar 

  • L. Weixue and W. YuanMei. Multicriteria regularizing neural network approach to implicit image information extraction from two projections. In: H.U. Lemke, K. Inamura, C.C. Jaffe and R. Felix (Eds), Computer Assisted Radiology, CAR’93, pp. 309–314. Berlin, Springer-Verlag, 1993.

    Google Scholar 

  • Z. Wu and L. Li. A line-integration based method for depth recovery from surface normals. Computer Vision, Graphics, and Image Processing 43: 53–66, 1988.

    Article  Google Scholar 

  • S.B. Xu and W.X. Lu. Surface reconstruction of 3D objects in computerized tomography. Computer Vision, Graphics, and Image Processing 44: 270–278, 1988.

    Article  Google Scholar 

  • J. Ylä-Jääski, F. Klein and O. Kübler. Fast direct display of volume data for medical diagnosis. CVGIP: Graphical Models and Image Processing 53(1): 7–18, 1991.

    Article  MATH  Google Scholar 

  • A.A. Young and P.J. Hunter. Epicardial surface estimation from coronary angiograms. Computer Vision, Graphics and Image Processing 47: 111–127, 1989.

    Article  Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Algorithms for the Recovery of the 3-D Shape of Anatomical Structures from Single X-Ray Images. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics