Skip to main content

Submillimeter Telescopes

  • Reference work entry

Abstract

The submillimeter band is a critical one for astronomy. It contains spectral and spatial information on very distant newly formed galaxies and on the early stages of star formation within gas clouds. Yet it is one of the few regions of the electromagnetic spectrum still to be made fully available to astronomy. This is in part due to the general difficulties of construction of detectors, receivers, and telescopes for these wavelengths and in part to the attenuating nature of the Earth’s atmosphere. In recent years, optical style telescopes have become available, either on high mountain sites, or in the case of the NASA Kuiper Airborne Observatory (KAO) or Stratospheric Observatory for Infrared Astronomy (SOFIA) on board a high-altitude airplane. The James Clerk Maxwell telescope at 15 m and the Caltech Submillimeter Observatory (CSO) telescope at 10.4 m are both large enough to have developed the field. However, the ESA satellite Herschel has now provided the required space platform for complete spectral coverage and the Atacama Large Millimeter/Submillimeter Array (ALMA) the high spatial resolution, aperture synthesis, high-sensitivity platform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baars, J. W. M. 2007, The Paraboloidal Reflector Antenna in Radio Astronomy and Communication (New York: Springer)

    Google Scholar 

  • Baars, J. W. M., et al. 1994, Proc. IEEE, 82, 687–696

    Article  ADS  Google Scholar 

  • Baars, J. W. M., et al. 2006, ALMA Memo 566 NRAO, Charlottesville VA

    Google Scholar 

  • Baars, J. W. M., et al. 2007, IEEE Antennas Propag. Mag., 49, 24–41

    Google Scholar 

  • Bennett, J. C., et al. 1976, IEEE Trans. Antennas Propag. 24, 295–303

    Article  ADS  Google Scholar 

  • Blake, G. A., Keene, J., & Phillips, T. G. 1985, Chlorine in dense interstellar clouds – the abundance of HCl in OMC-1. ApJ, 295, 501

    Article  ADS  Google Scholar 

  • Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, Molecular abundances in OMC-1 – the chemical composition of interstellar molecular clouds and the influence of massive star formation. ApJ, 315, 621

    Article  ADS  Google Scholar 

  • Blundell, R. 2007, in IEEE/MTT-S International Microwave Symposium (New York: IEEE), 1857–1860

    Google Scholar 

  • Booth, J. A., et al. 2003, Proc. SPIE, 4837, 919–933

    Article  ADS  Google Scholar 

  • Carlstrom, J. E., et al. 2011, PASP, 123, 568–581

    Article  ADS  Google Scholar 

  • Caves, C. 1982, Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26, 1817

    Article  ADS  Google Scholar 

  • Cheng, J., & Mangum, J. G. 1998, MMA Memo, Vol. 197 (Tucson: NRAO, Charlottesville VA)

    Google Scholar 

  • Dayem, A. H., & Martin, R. J. 1962, Quantum interaction of microwave radiation with tunneling between superconductors. Phys. Rev. Lett., 8, 246

    Article  ADS  Google Scholar 

  • Dicke, R. H. 1975, ApJ, 198, 605–615

    Article  ADS  Google Scholar 

  • Dolan, G. J., Phillips, T. G., & Woody, D. P. 1979, Low-noise 115 GHz mixing in superconducting oxide-barrier tunnel junctions. Appl. Phys. Lett., 34, 347

    Article  ADS  Google Scholar 

  • Dragone, C. 1978, Bell Syst. Tech. J., 57, 2663– 2684

    Google Scholar 

  • Dragone, C. 1982, IEEE Trans. Antennas Propag., 30, 331–339

    Article  ADS  Google Scholar 

  • Dragone, C. 1983, IEEE Trans. Antennas Propag., 31, 764–775

    Article  ADS  Google Scholar 

  • Fowler, J. W., et al. 2007, Appl. Opt., 46, 3444–3454

    Article  ADS  Google Scholar 

  • Gawronski, W. 2005, in American Control Conference. IEEE, FrA11.2

    Google Scholar 

  • Gershenzon, E., Gol’tsman, G., Gogidze, I. G., Gusev, Y. P., Elant’ev, A. I., Karasik, B. S., & Semenov, A. 1990, Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state. Sov. Phys. Supercond., 3, 1582

    Google Scholar 

  • Goldsmith, P. F. 1998, Quasioptical Systems (Piscataway: IEEE). Chap. 5

  • Greve,A., & Bremer, M. 2010, Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures (Berlin: Springer). Chap. 9

  • Griffin, M. W., Bock, J. J., & Gear, W. K. 2002, Appl. Opt., 41, 4666–4670

    Article  Google Scholar 

  • Guilloteau, S., et al. 1992, A&A, 262, 624–633

    Google Scholar 

  • Gusten, R., et al. 2006, A&A, 454, L13–L16

    Google Scholar 

  • Hanany, S., & Marrone, D. P. 2002, Appl. Opt., 41, 4666–4670

    Article  ADS  Google Scholar 

  • Hincks, A. D., et al. 2008, Proc. SPIE, 7020, 70201P

    Article  Google Scholar 

  • Jaffe, D. T., Harris, A. I., Silber, M., Genzel, R., & Betz, A. L. 1985, ApJ, 290, L59

    Article  ADS  Google Scholar 

  • Jenness, T., Lightfoot, J. F., & Holland, W. S. 1998, Proc. SPIE, 3357, 548–558

    Article  ADS  Google Scholar 

  • Keating, B. G., et al. 2003, Proc. SPIE, 4843, 284–295

    Article  ADS  Google Scholar 

  • Keene, J., Blake, G. A., & Phillips, T. G. 1983, First detection of the ground state J K = 10 → 00 submillimeter transition of interstellar ammonia. ApJ, 271, L27

    Article  ADS  Google Scholar 

  • Kooi, J. W., Chan, M., Phillips, T. G., Bumble, B., & LeDuc, H. G. 1992, IEEE Trans. Microw. Theory. Technol., 40, 812

    Article  ADS  Google Scholar 

  • Korsch, D. 1991, Reflective Optics (San Diego: Academic Press)

    Google Scholar 

  • Kramer, C., et al. 1998, Proc. SPIE, 3357, 711–720

    Article  ADS  Google Scholar 

  • Lamb, J. W. 1996, Int. J. Infrared Millim. Waves, 17, 1997–2034

    Article  ADS  Google Scholar 

  • Lamb, J. W., & Olver, A. D. 1986, Proc. IEE-H, 133, 43–49

    Google Scholar 

  • Lawrence, C. R., Herbig, T., & Readhead, A. C. S. 1994, Proc. IEEE, 82, 763–767

    Article  ADS  Google Scholar 

  • Leighton, R. B. 1978, A 10 meter telescope for millimeter and submillimeter astronomy. Final Technical Report for NSF Grant 73–04908

    Google Scholar 

  • Leong, M., et al. 2006, Proc. SPIE, 6275, 62750P

    Article  Google Scholar 

  • Low, F. J. 1961, Low-temperature germanium bolometer. JOSA, 51(11), 1300–1304

    Article  ADS  Google Scholar 

  • Malacara, D. 1992, Optical Shop Testing (2nd ed.; New York: Wiley). Chap. 3

  • Mangum, J. G., et al. 2006, PASP, 118, 1257–1301

    Article  ADS  Google Scholar 

  • McGrath, W. R. et al. 1997, Superconductive hot electron mixers with ultra-wide RF bandwidth for heterodyne receiver applications up to 3 THz, in Proceedings of the ESA Symposium ‘The Far Infrared and Submillimetre Universe’, Grenoble, France, ESA SP-401

    Google Scholar 

  • Menzies, J., et al. 2010, Proc. SPIE, 7739, 77390X

    Article  Google Scholar 

  • Moreira, F. J. S., Prata, A., Jr., & Thorburn, M. A. 1996, IEEE Trans. Antennas Propag., 44, 492–499

    Article  ADS  Google Scholar 

  • Morris, D., Davis, J. H., & Mayer, C. E. 1991, Proc. IEE-H, 138, 243–247

    Google Scholar 

  • Morris, D., et al. 2009, IET Microw. Antennas Propag. 3, 99–108

    Article  Google Scholar 

  • Nelson, J. E., Mast, T. S., & Faber, S. M. 1985, Keck Obs. Rep. 90, The Design of the Keck Observatory and Telescope (Berkeley: W. M. Keck Observatory, Kamuela HI)

    Google Scholar 

  • Neufeld, D. A., et al. 2010, Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6–0.4 (W31C). A&A, 518, L108

    Google Scholar 

  • Nikolic, B., Hills, R. E., & Richer, J. S. 2007a, A&A, 465, 679–683

    Google Scholar 

  • Nikolic, B., et al. 2007b, A&A, 465, 685–693

    Google Scholar 

  • Olberg, E., et al. 1992, Machinery’s Handbook (24th ed.; New York: Industrial Press), 226

    Google Scholar 

  • Padin, S. et al. 2008a, Appl. Opt., 47, 4418–4428

    Article  ADS  Google Scholar 

  • Padin, S., et al. 2008b, Electron. Lett., 44, 950–952

    Article  Google Scholar 

  • Page, L., et al. 2003, ApJ, 585, 566–586

    Article  ADS  Google Scholar 

  • Pearson, J. C., Guesten, R., Klein, & T., Whyborn, N. D. 2000, The local oscillator system for the heterodyne instrument for FIRST (HIFI), in Proceedings of the SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments, ed. J. B. Breckinridge, & P. Jacobsen, Munich, Germany (Bellingham: SPIE), 264

    Google Scholar 

  • Peterson, J. B., et al. 2000, ApJ, 532, L83–L86

    Article  ADS  Google Scholar 

  • Phillips, T. G. 1988, Techniques of submillimeter astronomy, in Millimetre and Submillimetre Astronomy, ed. R. D. Wolstencroft, & W. B. Burton (Dordrecht/Boston: Kluwer), 1–25.

    Google Scholar 

  • Phillips, T. G., & Huggins, P. J. 1981, Abundance of atomic carbon (CI) in dense interstellar clouds. ApJ, 251, 533–540

    Article  ADS  Google Scholar 

  • Phillips, T. G., & Jefferts, K. B. 1973, A cryogenic bolometer heterodyne receiver for millimeter wave astronomy. RScI, 44, 1009

    ADS  Google Scholar 

  • Phillips, T. G., & Keene, J. 1992, Submillimeter astronomy. IEEE Proc., 80, 1662

    Article  Google Scholar 

  • Phillips, T. G., & Woody, D. P. 1982, Millimeter- and submillimeter-wave receivers. ARA&A, 20, 285

    Google Scholar 

  • Phillips, T. G., Neugebauer, G., Werner, M. W., & Huggins, P. J. 1977, Detection of submillimeter (870-micron) CO emission from the Orion molecular cloud. ApJ, 217, L161

    Article  ADS  Google Scholar 

  • Phillips, T. G., Kwan, J. Y., & Huggins, P. J. 1980a, Detection of submillimeter lines of CO (0.65 mm) and H2O (0.79 mm), in IAU Symp. 87, Interstellar Molecules (Dordrecht: Reidel), 21

    Google Scholar 

  • Phillips, T. G., Huggins, P. J., Kuiper, T. B. H., & Miller, R. E. 1980b, Detection of the 610 \(\mu \)m (492 GHz) line of interstellar atomic carbon. ApJ, 238, L103

    Article  ADS  Google Scholar 

  • Pilbratt, G. L., et al. 2010, A&A, 518, L1

    Google Scholar 

  • Prober, D. I. 1993, Superconducting terahertz mixer using a transition-edge microbolometer. Appl. Phys. Lett., 62, 2119

    Article  ADS  Google Scholar 

  • Radford, S., et al. 2008, Proc. SPIE, 7012, 70121Z

    Article  Google Scholar 

  • Richards, P. L., Shen, T. M., Harris, R. E., & Lloyd, F. L. 1979, A quasiparticle heterodyne mixing in SIS tunnel junctions. Appl. Phys. Lett., 34, 345

    Article  ADS  Google Scholar 

  • Rowan-Robinson, M., Broadhurst, T., Lawrence, A., McMahon, R. G., Lonsdale, C. J., Oliver, S. J., Taylor, A. N., Hacking, P., Conrow, T., Saunders, W. S., Ellis, R. S., Efstathiou, G. P., & Condon, J. J. 1991, A high-redshift IRAS galaxy with huge luminosity – hidden quasar or protogalaxy? Nature, 351, 719

    Article  ADS  Google Scholar 

  • Rusch, W. V. T. et al. 1990, IEEE Trans. Antennas Propag., 38, 1141–1149

    Article  ADS  Google Scholar 

  • Russell, R. W., Melnick, G., Gull, G. E., & Harwit, M. 1980, Detection of the 157 micron (1910 GHz) [C II] emission line from the interstellar gas complexes NGC 2024 and M42. ApJ, 240, L99

    Article  ADS  Google Scholar 

  • Ruze, J. 1966, Proc. IEEE, 54, 633–640

    Article  ADS  Google Scholar 

  • Saito, M. 2011, in Proceedings of the General Assembly and Scientific Symposium 2011 XXXth URSI, Istanbul, J10.6

    Google Scholar 

  • Savini, G., & Hargrave, P. C. 2010, Proceedings of the 35th International Conference on Infrared, Millimeter and Terahertz Waves (Piscataway: IEEE), 1–2

    Google Scholar 

  • Sayers, J., et al. 2010, ApJ, 708, 1674–1691

    Article  ADS  Google Scholar 

  • Schroeder, D. R. 2000, Astronomical Optics (2nd ed.; San Diego: Academic). Chap. 6

  • Scott, P. F., & Ryle, M. 1977, Mon. Not. R. Astron. Soc. 178, 539–545

    ADS  Google Scholar 

  • Serabyn, E. 1995, Wide-field imaging optics for submm arrays, ASP Conference Series 75, 74–81, Astronomical Society of the Pacific, Orem UT

    Google Scholar 

  • Serabyn, E. 1997, Int. J. Infrared Millim. Waves, 18, 273–284

    Article  ADS  Google Scholar 

  • Serabyn, E. 2006, Proc. SPIE, 6275, 62750Z

    Article  ADS  Google Scholar 

  • Serabyn, E., & Wallace, J. K. 2010, Proc. SPIE, 7741, 77410U

    Article  ADS  Google Scholar 

  • Serabyn, E., Phillips, T. G., & Masson, C. R. 1991, Appl. Opt., 30, 1227–1241

    Article  ADS  Google Scholar 

  • Stacey, G. J., Lugten, J. B., & Genzel, R. 1987, Detection of interstellar CH in the far-infrared. ApJ, 313, 859

    Article  ADS  Google Scholar 

  • Stark, A. A., et al. 2001, PASP, 113, 567–585

    Article  ADS  Google Scholar 

  • Storey, J., Watson, D., & Townes, C. 1981, Detection of interstellar OH in the far-infrared. ApJ, 244, L27

    Article  ADS  Google Scholar 

  • Swetz, D. S., et al. 2011, ApJ Suppl., 194, 41–

    Google Scholar 

  • Tauber, J. A., et al. 2010, A&A, 520, A2

    Google Scholar 

  • Timoshenko, S., & Woinowsky-Krieger, S. 1959, Theory of Plates and Shells (2nd ed.; New York: McGraw-Hill), 57

    Google Scholar 

  • Tran, H., et al. 2008, Appl. Opt., 47, 103–109

    Article  MathSciNet  ADS  Google Scholar 

  • Tucker, J. R. 1979, Quantum limited detection in tunnel junction mixers. IEEE J. Quanum Electron., 15, 1234

    Article  ADS  Google Scholar 

  • von Hoerner, S. 1967, AJ, 72, 35–47

    Article  ADS  Google Scholar 

  • Wengler, M. J., & Woody, D. P. 1987, Quantum noise in heterodyne detection. IEEE J. Quantum Electron., 23, 613

    Article  ADS  Google Scholar 

  • Wilson, R. N. 1996, Reflecting Telescope Optics I (Berlin: Springer)

    Book  Google Scholar 

  • Wilson, R. N. 1999, Reflecting Telescope Optics II (Berlin: Springer)

    Google Scholar 

  • Woody, D. P. 2009, Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips, ASP Conference Series, 417, 3

    ADS  Google Scholar 

  • Woody, D. P. 2011, in Proceedings of the General Assembly and Scientific Symposium 2011 XXXth URSI, Istanbul, J10.7

    Google Scholar 

  • Woody, D., Serabyn, E., & Shinckel, A. 1998, Proc. SPIE, 3357, 474–485

    Article  ADS  Google Scholar 

  • Zobrist, T. L., et al. 2009, Proc. SPIE, 7426, 742613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Phillips, T.G., Padin, S., Zmuidzinas, J. (2013). Submillimeter Telescopes. In: Oswalt, T.D., McLean, I.S. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5621-2_7

Download citation

Publish with us

Policies and ethics