Skip to main content

Shakedown Under Thermomechanical Loads

  • Reference work entry
  • 154 Accesses

Overview

A shakedown theory for elastic–perfectly plastic structures subjected to thermomechanical loads varying within a given range is outlined under the assumption of temperature-dependent yield stress, but temperature-independent elastic moduli and thermal expansion coefficient are considered. Inertia and creep effects, along with thermal coupling phenomena, are considered negligible. A nonstandard constitutive model is used in which a central role is played by the yield function-assumed convex in the stress–temperature space. The inherent flow mechanism obeys the normality rule and includes, beside the standard plastic strain rates, an extra scalar variable work conjugate of the temperature, conventionally called plastic entropy rate, a measure of the reduction of the dissipation capacity of the material due to thermal softening. The static and kinematic shakedown theorems are formulated and proved within the present context, and the ways they can be used to evaluate the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koiter WT (1960) General theorems of elastic–plastic solids. In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol I, North Holland, Amsterdam, pp 167–221

    Google Scholar 

  2. König JA (1987) Shakedown of elastic–plastic structures. PWN-Polish Scientific Publishers/Elsevier, Warsaw/Amsterdam

    Google Scholar 

  3. Gokhfeld DA, Cherniavsky DF (1980) Limit analysis of structures at thermal cycling. Sijthoff & Noordoff, Alphen aan Rijn

    Google Scholar 

  4. Martin JB (1975) Plasticity: fundamentals and general results. The MIT Press, Cambridge, MA

    Google Scholar 

  5. Maier G (2001) On some issues of shakedown analysis. J Appl Mech 68:799–808

    MATH  Google Scholar 

  6. Maier G, Carvelli V, Cocchetti G (2000) On direct methods for shakedown and limit analysis. Eur J Mech A/Solids 19:79–100

    Google Scholar 

  7. Prager W (1956) Shakedown in elastic plastic media subjected to cycles of load and temperature. In: Proceedings A. Danusso Symposium. La scienza delle costruzioni, Zanichelli, Bologna (Italy), pp 239–244

    Google Scholar 

  8. König JA (1982) On some recent developments of shakedown theory. Adv Mech 5:237–258

    Google Scholar 

  9. Borino G (2000) Consistent shakedown theorems for materials with temperature dependent yield functions. Int J Solids Struct 37:3121–3147

    MATH  MathSciNet  Google Scholar 

  10. Ritchie RO, Knot JF (1973) On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech Phys Solids 21:395–410

    Google Scholar 

  11. Shpeizman W, Nicolaev VI, Peschanskaya NN, Kazykhanov VU, Nazarov AA (2007) Low-temperature plasticity in nanocrystalline titanium. Phys Solid State 49:678–683

    Google Scholar 

  12. Mróz Z, Weichert D, Dorosz S (eds) (1995) Inelastic behavior of structures under variable loads. Kluwer, Dordrecht

    Google Scholar 

  13. Kamenjarzh JA (1996) Limit analysis of solids and structures. CRC Press, London

    MATH  Google Scholar 

  14. Weichert D, Maier G (2000) Inelastic analysis of structures under variable repeated loads: theory and applications. Kluwer, Dordrecht

    Google Scholar 

  15. Weichert D, Maier G (2002) Inelastic behavior of structures under variable repeated loads. Springer, Wien

    Google Scholar 

  16. Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31:359–389

    MATH  Google Scholar 

  17. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  18. Simo JL, Miehe C (1992) Associative coupled thermoplasticity at finite strain: formulation, numerical analysis and implementation. Comput Meth Appl Mech Eng 98:41–104

    MATH  Google Scholar 

  19. Cohn MZ, Maier G, Greerson D (eds) (1979) Engineering plasticity by mathematical programming. Pergamon Press, New York

    MATH  Google Scholar 

  20. Lloyd Smith D (ed) (1990) Mathematical programming methods in structural plasticity. Springer, New York

    MATH  Google Scholar 

  21. Zarka J, Frelat J, Inglebert G, Kasmai-Navidi P (1998) A new approach to inelastic analysis of structures. Martinus Nijhoff, Dordrecht

    Google Scholar 

  22. Weichert D, Gross-Weege J (1998) The numerical assessment of elastic plastic sheets under variable mechanical loads and thermal loads using a two-surface yield condition. Int J Mech Sci 30:757–767

    Google Scholar 

  23. Ponter ARS, Carter KF (1997) Shakedown state simulation techniques based on linear elastic solutions. Comput Meth Appl Mech Eng 140:259–279

    MATH  MathSciNet  Google Scholar 

  24. Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Meth Eng 63:1174–1202

    MATH  Google Scholar 

  25. Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N (2011) Computation of limit and shakedown loads using a node-based smoothed finite element method. Int J Numer Meth Eng. doi:10.1002/nme.3317

    Google Scholar 

  26. Polizzotto C (1994) On elastic plastic structures under cyclic loads. Eur J Mech A/Solids 13:149–173

    MATH  MathSciNet  Google Scholar 

  27. Polizzotto C (1993) On the conditions to prevent plastic shakedown of structures: part 1 and part 2. J Appl Mech 60:15–25

    MATH  MathSciNet  Google Scholar 

  28. Polizzotto C (1993) A study on plastic shakedown of structures: part I and part II. J Appl Mech 60:318–330

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Castrenze Polizzotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Polizzotto, C., Borino, G. (2014). Shakedown Under Thermomechanical Loads. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_675

Download citation

Publish with us

Policies and ethics