Reference Work Entry

Handbook of Computational Chemistry

pp 573-610

Date:

Auxiliary Density Functional Theory: From Molecules to Nanostructures

  • Patrizia CalaminiciAffiliated withDepartamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508
  • , Victor-Daniel Domı́nguez-SoriaAffiliated withDepartamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508
  • , Roberto Flores-MorenoAffiliated withDepartamento de Química, CUCEI, Universidad de Guadalajara
  • , Gabriel Ulises Gamboa-Martı́nezAffiliated withDepartamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508
  • , Gerald GeudtnerAffiliated withInstitut Charles Gerhardt, UMR 5253 CNRS, Ecole de Chimie de Montpellier
  • , Annick GoursotAffiliated withDepartment of Chemistry, IBI – Institute for Biocomplexity and Informatics, ISEEE – Institute for Sustainable Energy, Environment, Economy, University of Calgary
  • , Dennis R. SalahubAffiliated withDepartamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508
  • , Andreas M. KösterAffiliated withDepartamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508

Abstract

The working equations of auxiliary density functional theory (ADFT) and auxiliary density perturbation theory (ADPT) are derived in the framework of the linear combination of Gaussian type orbital expansion. The ADFT and ADPT implementations in the density functional theory program deMon2k are discussed. The use of ADFT and ADPT in first-principle Born–Oppenheimer molecular dynamics at the pico- to nanosecond time scale is reviewed. In particular, the long-standing mystery of the discrepancy between experiment and computations for the polarizability of small sodium clusters is resolved. Applications of the parallel deMon2k ADFT implementation to systems on the nanometer scale are reviewed. This includes Al-zeolites and giant fullerenes. It is shown that structures as large as C540m can be fully optimized without any symmetry constrains in the ADFT framework employing all-electron basis sets within a few days.