Skip to main content

Biofilms in Microfluidic Devices

  • Reference work entry

Synonyms

Floccules; Microbial aggregations

Definition

Biofilms are aggregations of microbes that are encased by extracellular polymeric substances (EPS) and adhere to surfaces or interfaces. Biofilms exist in a very wide diversity of environments, and microfluidic devices are being increasingly utilized to study and understand their formation and properties.

Overview

Microbes often form aggregates on interfaces, and due to a production of EPS, the aggregates become encased in a matrix [1]. Though microbes in a biofilm are physiologically distinct from bacteria growing in a free swimming state (planktonic bacteria), biofilm growth is a complex process that is typically initiated by planktonic bacteria themselves. Biofilm growth is initiated with bacterial adhesion to a surface, followed by events such as growth, EPS secretion, and morphological and physiological changes. Microbial biofilms are excellent examples of multi-scale phenomena. Cell-to-cell communication, which plays a role...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappinscott, H.M.: Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995)

    Article  CAS  Google Scholar 

  2. Becker, H., Gartner, C.: Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1), 12–26 (2000)

    Article  CAS  Google Scholar 

  3. Madou, M.: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. CRC Press, Boca Raton (2002)

    Google Scholar 

  4. Yawata, Y., Toda, K., Setoyama, E., Fukuda, J., Suzuki, H., Uchiyama, H., Nomura, N.: Bacterial growth monitoring in a microfluidic device by confocal reflection microscopy. J. Biosci. Bioeng. 110(1), 130–133 (2010)

    Article  CAS  Google Scholar 

  5. Lee, J.-H., Kaplan, J., Lee, W.: Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed. Microdevices 10(4), 489–498 (2008)

    Article  CAS  Google Scholar 

  6. Rusconi, R., Lecuyer, S., Guglielmini, L., Stone, H.A.: Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7(50), 1293–1299 (2010)

    Article  Google Scholar 

  7. Richter, L., Stepper, C., Mak, A., Reinthaler, A., Heer, R., Kast, M., Bruckl, H., Ertl, P.: Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab Chip 7(12), 1723–1731 (2007)

    Article  CAS  Google Scholar 

  8. De La Fuente, L., Montanes, E., Meng, Y., Li, Y., Burr, T.J., Hoch, H.C., Wu, M.: Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl. Environ. Microbiol. 73(8), 2690–2696 (2007)

    Article  CAS  Google Scholar 

  9. Timp, W., Mirsaidov, U., Matsudaira, P., Timp, G.: Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab Chip 9(7), 925–934 (2009)

    Article  CAS  Google Scholar 

  10. Connell, J.L., Wessel, A.K., Parsek, M.R., Ellington, A.D., Whiteley, M., Shear, J.B.: Probing prokaryotic social behaviors with bacterial “Lobster Traps”. MBio 1(4), e00202–e00210 (2010)

    Article  CAS  Google Scholar 

  11. Boedicker, J.Q., Vincent, M.E., Ismagilov, R.F.: Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chem. Int. Ed. Engl 48(32), 5908–5911 (2009)

    Article  CAS  Google Scholar 

  12. Park, S., Wolanin, P.M., Yuzbashyan, E.A., Silberzan, P., Stock, J.B., Austin, R.H.: Motion to form a quorum. Science 301(5630), 188 (2003)

    Article  CAS  Google Scholar 

  13. Klapper, I., Dockery, J.: Mathematical description of microbial biofilms. SIAM Rev. 52(2), 221–265 (2010)

    Article  Google Scholar 

  14. Janakiraman, V., Englert, D., Jayaraman, A., Baskaran, H.: Modeling growth and auorum sensing in biofilms grown in microfluidic chambers. Ann. Biomed. Eng. 37(6), 1206–1216 (2009)

    Article  Google Scholar 

  15. Volfson, D., Cookson, S., Hasty, J., Tsimring, L.S.: Biomechanical ordering of dense cell populations. Proc. Natl. Acad. Sci. U. S. A. 105(40), 15346–15351 (2008)

    Article  Google Scholar 

  16. Ingham, C.J., Vlieg, J.: MEMS and the microbe. Lab Chip 8(10), 1604–1616 (2008)

    Article  CAS  Google Scholar 

  17. Stewart, P.S., Franklin, M.J.: Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6(3), 199–210 (2008)

    Article  CAS  Google Scholar 

  18. Kumar, A., Williams, S.J., Chuang, H.-S., Green, N.G., Wereley, S.T.: Hybrid opto-electric manipulation in microfluidics-opportunities and challenges. Lab Chip 11(13), 2135–2148 (2011)

    Article  CAS  Google Scholar 

  19. Kumar, A., Mortensen, N.P., Mukherjee, P.P., Retterer, S.T., Doktycz, M.J.: Electric field induced bacterial flocculation of enteroaggregative Escherichia coli 042. Appl. Phys. Lett. 98(25), 253701–253703 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Kumar performed the work as a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory (ORNL). The authors acknowledge research support from the US Department of Energy (US DOE) Office of Biological and Environmental Sciences. ORNL is managed by UT-Battelle, LLC, for the US DOE under Contract no. DEAC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Neethirajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Neethirajan, S., Karig, D., Kumar, A., Mukherjee, P.P., Retterer, S.T., Doktycz, M.J. (2012). Biofilms in Microfluidic Devices. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_427

Download citation

Publish with us

Policies and ethics