Skip to main content

Terpenes: Chemistry, Biological Role, and Therapeutic Applications

  • Reference work entry
  • First Online:

Abstract

Terpenoids are naturally occurring hydrocarbons produced by a wide variety of plants and animals. They are classified based on five-carbon (isoprene) units as their building blocks, numbering more than 55,000 molecules having been discovered till date. Different terpenes include hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30), and polyterpenes (>C30). Diverse functional roles of terpenoids have been critically studied and well-accepted now. Some of them include natural flavor additives for food or fragrances in perfumery and in traditional and alternate medicines as aromatherapy. Biosynthetically, terpenoids are formed via two major synthetic pathways: mevalonic acid (MVA) pathway and 2C-methyl-D-erythritol-4-phosphate (MEP) pathway. Biologically active terpenoids span various orders of magnitude. Most comprehensively studied of which is the effect of terpenes in prevention and treatment of cancer. Illustratively, Taxol derivative (paclitaxel and docetaxel) are among the widely used drugs in cancer chemotherapy. Other important therapeutic uses of terpenoids include antimicrobial, antifungal, antiviral, antihyperglycemic, anti-inflammatory, antioxidants, antiparasitic, immunomodulatory, and as skin permeation enhancer. Since many of these molecules are only found in very low levels in nature, their massive harvesting to obtain sufficient amounts of the drug including synthetic biology and metabolic engineering provides innovative approaches to increase the production of terpenoids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

COX:

Cyclooxygenase

DMAPP:

Dimethylallyl pyrophosphate

DXP:

1-Deoxy-D-xylulose-5-phosphate

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

GPP:

Geranyl pyrophosphate

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

IL:

Interleukin

iNOS:

Inducible nitric oxide synthetase

IPP:

Isopentenyl pyrophosphate

MEP:

2C-Methyl-D-erythritol-4-phosphate

MIC:

Minimum inhibitory concentration

MVA:

Mevalonic acid

NF:

Nuclear factor

PG:

Prostaglandin

PL:

Phospholipase

TNF:

Tumor necrosis factor

WBC:

White blood cells

References

  1. Hanson JR (2003) Natural products: the secondary metabolites. RSC, Cambridge

    Google Scholar 

  2. Keeling CI, Bohlmann J (2006) Genes, enzymes, and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  CAS  Google Scholar 

  3. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318

    Google Scholar 

  4. Wallach O (1887) Zur kenntnis der terpene und ätherischen oele. Justus Lieb Ann Chem 238:78

    Article  Google Scholar 

  5. Ruzicka L (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357

    Article  CAS  Google Scholar 

  6. Lynen F, Eggerer H, Henning U, Kessel I (1958) Farnesyl-pyrophosphat und 3-Methyl-Δ3-butenyl-1-pyrophosphat, die biologischen vorstufen des squalens. Angew Chem 70:738–742

    Article  CAS  Google Scholar 

  7. Bloch K, Chaykin S, Phillips AH, de Waard A (1959) Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J Biol Chem 234:2595–2604

    CAS  Google Scholar 

  8. Tavormina PA, Gibbs MH, Huff JW (1956) Utilization of β-hydroxy-β-methyl-γ-valerolactone in cholesterol biosynthesis. J Am Chem Soc 78:4498–4499

    Article  CAS  Google Scholar 

  9. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH, Weinheim

    Google Scholar 

  10. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    CAS  Google Scholar 

  11. Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  Google Scholar 

  12. Steele CL, Katoh S, Bohlmann J, Croteau R (1998) Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497

    Article  CAS  Google Scholar 

  13. Stoessl A, Stothers JB, Ward EB (1976) Sesquiterpenoid stress compounds of the solanaceae. Phytochemistry 15:855–872

    Article  CAS  Google Scholar 

  14. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular recognition and function of plant isoprenoids. Prog Lipid Res 44:357–429

    Article  CAS  Google Scholar 

  15. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  CAS  Google Scholar 

  16. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  CAS  Google Scholar 

  17. Dereth RP, Jeanne MR, Bonnie B, Seiichi PTM (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314

    Article  CAS  Google Scholar 

  18. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  CAS  Google Scholar 

  19. Kazuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  Google Scholar 

  20. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  Google Scholar 

  21. Dewick PM (2002) The biosynthesis of C-5-C-25 terpenoids compounds. Nat Prod Rep 19:181–222

    Article  CAS  Google Scholar 

  22. Wanke M, Skorupinska-Tudek K, Swiezewska E (2001) Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim Pol 48:663–672

    CAS  Google Scholar 

  23. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  CAS  Google Scholar 

  24. Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoids biosynthesis in plants. J Biosci 28:637–646

    Article  CAS  Google Scholar 

  25. Carretero Paulet L, Ahumada I, Cunillera N, Rodriguez Concepcion M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591

    Article  CAS  Google Scholar 

  26. Lücker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant J 27:315–324

    Article  Google Scholar 

  27. Elson CE, Yu SG (2004) The chemoprevention of cancer by mevalonate-derived constituents of fruits and vegetables. J Nutr 124:607–614

    Google Scholar 

  28. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71S–88S

    Article  CAS  Google Scholar 

  29. Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775S–778S

    CAS  Google Scholar 

  30. Gould MN (1997) Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect 105:977–979

    CAS  Google Scholar 

  31. Reddy BS, Wang CX, Samaha H, Lubet R, Steele VE, Kelloff GJ, Rao CV (1997) Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res 57:420–425

    CAS  Google Scholar 

  32. Shi W, Gould MN (2002) Induction of cytostasis in mammary carcinoma cells treated with the anticancer agent perillyl alcohol. Carcinogenesis 23:131–142

    Article  CAS  Google Scholar 

  33. Crowell PL, Gould MN (1994) Chemoprevention and therapy of cancer by D-limonene. Crit Rev Oncog 5:1–22

    Article  CAS  Google Scholar 

  34. Bardon S, Foussard V, Fournel S, Loubat A (2002) Monoterpenes inhibit proliferation of human colon cancer cells by modulating cell cycle-related protein expression. Cancer Lett 181:187–194

    Article  CAS  Google Scholar 

  35. Gupta A, Myrdal PB (2004) Development of a perillyl alcohol topical cream formulation. Int J Pharm 269:373–383

    Article  CAS  Google Scholar 

  36. Armaka M, Papanikolaou E, Sivropoulou A, Arsenakis M (1999) Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res 43:79–92

    Article  CAS  Google Scholar 

  37. Carvalho CC, Fonseca MM (2006) Carvone: why and how should one bother to produce this terpene. Food Chem 95:413–422

    Article  CAS  Google Scholar 

  38. Dieras V (1998) Taxanes in combination with doxorubicin in the treatment of the treatment of metastatic breast cancer. Semin Oncol 25:18–22

    CAS  Google Scholar 

  39. Sgadari C, Toschi E, Palladino C et al (2000) Mechanism of paclitaxel activity in Kaposi’s sarcoma. J Immunol 165:509–517

    CAS  Google Scholar 

  40. Rowinsky EK, Citardi MJ, Noe DA, Donehower RC (1993) Sequence-dependent cytotoxic effects due to combinations of cisplatin and the antimicrotubule agents taxol and vincristine. J Cancer Res Clin Oncol 119:727–733

    Article  CAS  Google Scholar 

  41. Ogbourne SM, Suhrbier A, Jones B et al (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64:2833–2839

    Article  CAS  Google Scholar 

  42. Ersvaer E, Kittang AO, Hampson P, Sand K, Gjertsen BT, Lord JM, Bruserud O (2010) The protein kinase C Agonist PEP005 (Ingenol 3-Angelate) in the treatment of human cancer: a balance between efficacy and toxicity. Toxins 2:174–194

    Article  CAS  Google Scholar 

  43. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  CAS  Google Scholar 

  44. Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr, McCrimmon D, Zasloff M (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358

    Article  CAS  Google Scholar 

  45. Sills AK, Williams JI, Tyler BM et al (1998) Squalamine inhibits angiogenesis and solid tumor growth in vivo and pertubs embryonic vasculature. Cancer Res 58:2784–2792

    CAS  Google Scholar 

  46. Crowell PL, Chang RR, Ren ZB, Elson CE, Gould MN (1991) Selective inhibition of isoprenylation of 21–26-kDa proteins by the anticarcinogen D-limonene and its metabolites. J Biol Chem 266:17679–17685

    CAS  Google Scholar 

  47. Wiseman DA, Werner SR, Crowell PL (2007) Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21Cip1 and p27Kip1 in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 320:1163–1170

    Article  CAS  Google Scholar 

  48. Burke YD, Ayoubi AS, Werner SR, McFarland BC, Heilman DK, Ruggeri BA, Crowell PL (2002) Effects of the isoprenoids perillyl alcohol and farnesol on apoptosis biomarkers in pancreatic cancer chemoprevention. Anticancer Res 22:3127–3134

    CAS  Google Scholar 

  49. Raphael TJ, Kuttan G (2003) Immunoregulatory activity of naturally occurring monoterpenes carvone, limonene and perillic acid. Immunopharmacol Immunotoxicol 25:285–294

    Article  CAS  Google Scholar 

  50. Cipak L, Grausova L, Miadokova E, Novotny L, Rauko P (2006) Dual activity of triterpenoids: apoptotic versus antidifferentiation effects. Arch Toxicol 80:429–435

    Article  CAS  Google Scholar 

  51. Thuya TTT, Quana TD, Anha NTH, Sunga TV (2011) A new hydrochalcone from Miliusa sinensis. Nat Prod Res 25:1361–1365

    Article  CAS  Google Scholar 

  52. Maltzman TH, Hurt LM, Elson CE et al (1989) The prevention of nitrosomethylurea- induced mammary tumors by d-limonene and orange oil. Carcinogenesis 10:781–783

    Article  CAS  Google Scholar 

  53. Wattenberg LW, Sparnins VL, Barany G (1986) Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res 49:2689–2692

    Google Scholar 

  54. Burke YD, Stark MJ, Roach SL, Sen SE, Crowell PL (1997) Inhibition of pancreatic cancer growth by the dietary isoprenoids famesol and geraniol. Lipids 3:151–156

    Article  Google Scholar 

  55. Mills JJ, Chari RS, Boyer IJ, Gould MN, Jirtle RL (1995) Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res 55:979–983

    CAS  Google Scholar 

  56. Ripple GH, Gould MN, Stewart JA, Tutsch KD, Arzoomanian RZ, Alberti D, Feierabend C, Pomplun M, Wilding G, Bailey HH (1998) Phase I clinical trial of perillyl alcohol administered daily. Clin Cancer Res 4:1159–1164

    CAS  Google Scholar 

  57. Zhang S, Won Y-K, Ong C-N, Shen H-M (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5:239–249

    Article  CAS  Google Scholar 

  58. Sun SY, Lotan R (2002) Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol 41:41–55

    Article  Google Scholar 

  59. Zheng Y, Cramer PM, Lubet RA, Steele VE, Kelloff GJ, Pereira MA (1999) Effect of retinoids on AOM-induced colon cancer in rats: modulation of cell proliferation, apoptosis and aberrant crypt foci. Carcinogenesis 20:255–260

    Article  CAS  Google Scholar 

  60. Lippman SM (2000) Advances in the development of retinoids as chemopreventive agents. J Nutr 130:479S–482S

    CAS  Google Scholar 

  61. Pastorino U (1995) Lung cancer chemoprevention. Cancer Treat Res 72:43–74

    Article  CAS  Google Scholar 

  62. Veronesi U, De Palo G, Marubini E et al (1999) Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 91:1847–1856

    Article  CAS  Google Scholar 

  63. Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16:S28–S37

    CAS  Google Scholar 

  64. Mujoo K, Haridas V, Hoffmann JJ et al (2001) Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res 61:5486–5490

    CAS  Google Scholar 

  65. Jing C, Mingjie L, Zhao W, Yong J (2002) Apoptosis induced by dioscin in Hela cells. Biol Pharm Bull 25:193–196

    Article  Google Scholar 

  66. Liu WK, Xu SX, Che CT (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 67:1297–1306

    Article  CAS  Google Scholar 

  67. Omenn GS, Goodman GE, Thornquist MD et al (1996) Risk factors for lung cancer and for intervention effects in CARET, the beta-carotene and retinol efficacy trial. J Natl Cancer Inst 88:1550–1559

    Article  CAS  Google Scholar 

  68. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035

    Article  Google Scholar 

  69. Slattery ML, Benson J, Curtin K, Ma KN, Schaeffer D, Potter JD (2000) Carotenoids and colon cancer. Am J Clin Nutr 71:575–582

    CAS  Google Scholar 

  70. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776

    Article  CAS  Google Scholar 

  71. Egorin MJ, Rosen DM, Benjamin SE, Callery PS, Sentz DL, Eiseman JL (1997) In vitro metabolism by mouse and human liver preparation of halomon, an antitumour halogenated monoterpene. Cancer Chem Pharm 41:9–14

    Article  CAS  Google Scholar 

  72. Liu S, Kulp SK, Sugimoto Y et al (2002) The (−) enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res 22:33–38

    Google Scholar 

  73. Matlin SA, Zhou R, Bialy G, Blye RP, Naqvi RH, Lindberg MC (1985) (−)-Gossypol: an active male antifertility agent. Contraception 31:141–149

    Article  CAS  Google Scholar 

  74. Manchali S, Murthy KNC, Patil BS (2011) Crucial facts about health benefits of popular cruciferous vegetables. J Fun Foods 4(1):94–106

    Article  CAS  Google Scholar 

  75. Lee JS, Kim J, Kim BY, Lee HS, Ahn JS, Chang YS (2000) Inhibition of phospholipase Cg1 and cancer cell proliferation by triterpene esters from Uncaria rhynchophylla. J Nat Prod 63:753–756

    Article  CAS  Google Scholar 

  76. Ulubelen A (2003) Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry 63:395–399

    Article  CAS  Google Scholar 

  77. Hada T, Shiraishi A, Furuse S, Inoue Y, Hamashima H, Matsumoto Y, Masuda K, Shimada J (2003) Inhibitory effects of terpenes on the growth of Staphylococcus aureus. Nat Med 57:64–67

    CAS  Google Scholar 

  78. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478

    Article  CAS  Google Scholar 

  79. Copp BR (2003) Antimycobacterial natural products. Nat Prod Rep 20:535–557

    Article  CAS  Google Scholar 

  80. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Del Rev 56:603–618

    Article  CAS  Google Scholar 

  81. Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6:39–46

    Article  CAS  Google Scholar 

  82. John AJ, Karunakaran VP, George V (2007) Chemical composition an antibacterial activity of Neolitsea foliosa (Nees) Gamble var. caesia (Meisner) Gamble. J Essent Oil Res 19:498–500

    Article  CAS  Google Scholar 

  83. Rastogi N et al (1998) Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol Med Microbiol 20:267–273

    Article  CAS  Google Scholar 

  84. Lunde CS, Kubo I (2000) Effect of polygodial on the mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother 44:1943–1953

    Article  CAS  Google Scholar 

  85. Rajab MS, Cantrell CL, Franzblau SG, Fischer NH (1998) Antimycobacterial activity of (e)-phytol and derivatives – a preliminary structure-activity study. Planta Med 64:2–4

    Article  CAS  Google Scholar 

  86. Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67:685–694

    Article  CAS  Google Scholar 

  87. El Sayed KA, Bartyzel P, Shen XY, Perry TL, Kjawiony JK, Hmann MT (2000) Marine natural products as antituberculosis agents. Tetrahedron 56:949–953

    Article  CAS  Google Scholar 

  88. Chen K, Shi Q, Fujioka T et al (1995) Anti-AIDs agents – XIX. Neotripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: isolation and structural elucidation. Bioorg Med Chem 3:1345–1348

    Article  CAS  Google Scholar 

  89. Badam L (1994) In vitro studies on the effect of glycyrrhizin from Indian Glycyrrhiza glabra Linn. on some RNA and DNA viruses. Ind J Pharmacol 26:194–199

    CAS  Google Scholar 

  90. Yang SS, Cragg GM, Newman DJ, Bader JP (2001) Natural product-based anti-HIV drug discovery and development facilitated by the NCI development therapeutics program. J Nat Prod 64:265–277

    Article  CAS  Google Scholar 

  91. Loya S, Hizi A (1990) The inhibition of human immunodeficiency virus type-1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett 269:131–134

    Article  CAS  Google Scholar 

  92. Loya S, Tal R, Kashman Y, Hizi A (1990) Illimaquinone a selective inhibitor of the RNAase H activity of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 34:2009–2012

    Article  CAS  Google Scholar 

  93. Khan MT, Ather A, Thompson KD, Gambari R (2005) Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 67:107–119

    Article  CAS  Google Scholar 

  94. Niedermeyer TH, Lindequist U, Mentel R, Gordes D, Schmidt E, Thurow K, Lalk M (2005) Antiviral terpenoids constituents of Ganoderma pfeifferi. J Nat Prod 68:1728–1731

    Article  CAS  Google Scholar 

  95. Sakemi S, Higa T, Jefford CW, Bernardinelli G (1986) Venustatriol: a new anti-viral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 27:4287–4290

    Article  CAS  Google Scholar 

  96. Groweiss A, Look SA, Fenical W (1988) Solenolides: new anti-inflammatory and antiviral diterpenoids from a marine octocoral of the genus Solenopodium. J Org Chem 53:2401–2406

    Article  CAS  Google Scholar 

  97. Drieu K, Jaggy H (2000) Medicinal and aromatic plants-industrial profiles. In: van Beek TA (ed) Ginkgo biloba, vol 12. Harwood Academic, Amsterdam, pp 267–277

    Google Scholar 

  98. Simonson W (1998) Promising agents for treating Alzheime’s disease. Am J Health Syst Pharm 55:S11–S16

    CAS  Google Scholar 

  99. Itil T, Martorano D (1995) Natural substances in psychiatry (Ginkgo biloba in dementia). Psychopharmacol Bull 31:147–158

    CAS  Google Scholar 

  100. Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF (1997) A placebo-controlled, double-blind randomized trial of an extract of gingko biloba for dementia. North American EGb study group. J Am Med Assoc 278:1327–1332

    Article  Google Scholar 

  101. Warburton DM (1993) Ginkgo biloba extract and cognitive decline. Br J Clin Pharmacol 36:137

    Article  CAS  Google Scholar 

  102. Petkov V, Roussinov K, Todorov S, Lazarova M, Yonkov D, Draganova S (1984) Pharmacological investigations on Rhaponticum carthamoides. Planta Med 50:205–209

    Article  CAS  Google Scholar 

  103. Mosharrof AH (1987) Effects of extract from Rhaponticum carthamoides (Willd) Iljin (Leuzea) on learning and memory in rats. Acta Physiol Pharmacol Bulg 13:37–42

    CAS  Google Scholar 

  104. Rocha FF, Lapa AJ, Lima TCM (2002) Evaluation of the anxiolytic-like effects of Cecropia glazioui Sneth in mice. Pharmacol Biochem Behav 71:183–190

    Article  CAS  Google Scholar 

  105. Hall IH, Lee KH, Starnes CO, Muraoka O, Sumida Y, Waddell TG (1980) Antihyperlipidemic activity of sesquiterpene lactones and related compounds. J Pharm Sci 69:694–697

    Article  CAS  Google Scholar 

  106. Yang ZZ, Li J, Li SX, Feng W, Wang H (2011) Effect of ginkgolide B on striatal extracellular amino acids in middle cerebral artery occluded rats. J Ethnopharmacol 136:117–122

    Article  CAS  Google Scholar 

  107. Sharma SB, Nasir A, Prabhu KM, Murthy PS, Dev G (2003) Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J Ethnopharmacol 85:201–206

    Article  CAS  Google Scholar 

  108. Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+−channel activity. Metabolism 49:208–214

    Article  CAS  Google Scholar 

  109. Abudula R, Jeppesen PB, Rolfsen SED, Xiao J, Hermansen K (2004) Rebaudioside A potentially stimulates insulin secretion from isolated mouse islets: studies on the dose-, glucose-, and calcium-dependency. Metabolism 53:1378–1381

    Article  CAS  Google Scholar 

  110. Iqbal Choudhary M, Baig I, Nure-Alam M, Shahzad-ui-Hussan S, Ondognii P, Bunderya M, Oyun Z, Rahman A (2002) New α-Glucosidase inhibitors from the Mongolian medicinal plant Ferula mongolica. Helv Chim Acta 84:2409–2416

    Google Scholar 

  111. Toshiyuki N, Kyuji M, Hiroki U, Masayuki Y, Joji Y (2000) Jpn Kokai Tokkyo Kono 8

    Google Scholar 

  112. Hisashi M, Toshio M, Hiroki U, Masayuki Y (2001) Medicinal foodstuffs. XXVI. Inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from Centella asiatica (Gotu Kola). Heterocycles 55:1499–1504

    Article  Google Scholar 

  113. Matsuda H, Morikawa T, Ueda H, Yoshikawa M (2001) Medical foodstuffs. XXVII. Saponin constitutes of gotu kola(2):structures of new ursane-and oleanane-type triterpene oligoglycosidase, centell. Chem Pharm Bull 49:1368–1371

    Article  CAS  Google Scholar 

  114. Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YMA, Passwater R (2003) Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa, leaves in Type II diabetics. A dose-dependence study. J Ethanopharmcol 87:115–117

    Article  Google Scholar 

  115. Look SA, Fenical W, Jacobs RS, Clardy J (1986) The pseudopterosins: anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc Natl Acad Sci USA 83:6238–6240

    Article  CAS  Google Scholar 

  116. Peana AT, D’Aquila PS, Chessa ML, Moretti MD, Serra G, Pippia P (2003) (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol 460:37–41

    Article  CAS  Google Scholar 

  117. Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MD (2002) Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9:721–726

    Article  CAS  Google Scholar 

  118. Look SA, Fenical W, Matsumoto GK, Clardy J (1986) The pseudopterosins: a new class of anti-inflammatory and analgesic diterpene pentosides from the marine sea whip Pseudoptergorgia elisabethae (Octocorallia). J Org Chem 51:5140–5145

    Article  CAS  Google Scholar 

  119. Roussis V, Fenical W, Strobel SA, Van Duyne GD, Clardy J (1990) New anti-inflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. J Org Chem 55:4916–4922

    Article  CAS  Google Scholar 

  120. Rodrıguez II, Shi YP, Garcia OJ, Rodriguez AD, Mayer AMS, Sanchez JA, Ortega-Barria E, Gonzalez J (2004) New pseudopterosin and seco-pseudopterosin diterpene glycosides from two Colombian isolates of Pseudopterogorgia elisabethae and their diverse biological activities. J Nat Prod 67:1672–1680

    Article  CAS  Google Scholar 

  121. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  CAS  Google Scholar 

  122. Recio MC, Giner RM, Mánez S, Rios JL (1995) Structural requirements for the anti-inflammatory activity of natural triterpenoids. Planta Med 61:182–185

    Article  CAS  Google Scholar 

  123. Otuki MF, Vieira-Lima F, Malheiros A, Yunes RA, Calixto JB (2005) Topical antiinflammatory effects of the ether extract from Protium kleinii and R-amyrin pentacyclic triterpene. Eur J Pharmacol 507:253–259

    Article  CAS  Google Scholar 

  124. Mukherjee PK, Saha K, Pal M, Saha BP (1997) Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera (letter). Planta Med 63:367–369

    Article  CAS  Google Scholar 

  125. Potts BCM, Faulkner DJ, De Carvalho MS, Jacobs RS (1992) Chemical mechanism of inactivation of bee venom phospholipase A-2 by the marine natural products manoalide luffariellolide and scalaradial. J Am Chem Soc 114:5093–5100

    Article  CAS  Google Scholar 

  126. Puliti R, De Rosa S, Mattia CA, Mazzarella L (1990) Structure and stereochemistry of an acetate derivative of cacospongionolide a new antitumorial sesterterpenoid from marine sponge Cacospongia mollior. Acta Crystallog C46:1533–1536

    CAS  Google Scholar 

  127. Reddy AM, Lee JY, Seo JH, Kim BH, Chung EY, Ryu SY, Kim YS, Lee CK, Min KR, Kim Y (2006) Artemisolide from Artemisia asiatica: nuclear factor-B (NF-κB) inhibitor suppressing prostaglandin E2 and nitric oxide production in macrophages. Arch Pharm Res 29:591–597

    Article  CAS  Google Scholar 

  128. Santos FA, Rao VS (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 14:240–244

    Article  CAS  Google Scholar 

  129. Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ (2000) Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res 49:619–626

    Article  CAS  Google Scholar 

  130. Escandell JM, Recio MC, Mánez S, Giner RM, Cerdá-Nicolás M, Rios JL (2007) Cucurbitacin R reduces the inflammation and bone damage associated with adjuvant arthritis in Lewis rats by suppression of tumor necrosis factor-α in T lymphocytes and macrophages. J Pharmacol Exp Ther 320:581–590

    Article  CAS  Google Scholar 

  131. Corea G, Fattorusso E, Lanzotti V, Di Meglio P, Maffia P, Grassia G, Ialenti A, Ianaro A (2005) Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent. J Med Chem 48:7055–7062

    Article  CAS  Google Scholar 

  132. Ma J-Q, Liu C-M, Qin Z-H, Jiang J-H, Sun Y-Z (2011) Ganoderma applanatum terpenes protect mouse liver against benzo(α)pyren-induced oxidative stress and inflammation. Enviorn Toxicol Pharmacol 31:460–468

    Article  CAS  Google Scholar 

  133. Shyur L-F, Huang C-C, Lo C-P, Chiu C-Y, Chen Y-P, Wang S-Y, Chang S-T (2008) Hepatoprotective phytocompounds from Cryptomeria japonica are potent modulators of inflammatory mediators. Phytochemistry 69:1348–1358

    Article  CAS  Google Scholar 

  134. Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860

    Article  CAS  Google Scholar 

  135. Friedman M, Henika PR, Levin CE, Mandrell RE (2004) Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enteric in apple juice. J Agric Food Chem 52:6042–6048

    Article  CAS  Google Scholar 

  136. Balint GA (2001) Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol Ther 90:261–265

    Article  CAS  Google Scholar 

  137. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62

    Article  Google Scholar 

  138. Uys AC, Malan SF, van Dyk S, van Zyl RL (2002) Antimalarial compounds from Parinari capensis. Bioorg Med Chem Lett 12:2167–2169

    Article  CAS  Google Scholar 

  139. Sairafianpour M, Christensen J, Staerk D, Budnik BA, Kharazmi A, Bagherzadeh K, Jaroszewski JW (2001) Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod 64:1398–1403

    Article  CAS  Google Scholar 

  140. Robledo S, Osorio E, Munoz D, Jaramillo LM, Restrepo A, Arango G, Velez I (2005) In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Antimicrob Agents Chemother 49:1652–1655

    Article  CAS  Google Scholar 

  141. Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, Aoki T (2002) Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod 65:509–512

    Article  CAS  Google Scholar 

  142. Bringmann G, Saeb W, Assi LA, Francois G, Sankara Narayanan AS, Peters K, Peters EM (1997) Betulinic acid: isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester. Planta Med 63:255–257

    Article  CAS  Google Scholar 

  143. Wright AD, Wang H, Gurrath M, Konig GM, Kicak G, Neumann G, Loria P, Foley M, Tilley L (2001) Inhibition of heme detoxification processes underlies the antimalarial activity of terpene isonitrile compounds from marine sponges. J Med Chem 44:873–885

    Article  CAS  Google Scholar 

  144. Konig GM, Wright AD, Angerhofer CK (1996) Novel potent antimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J Org Chem 61:3259–3267

    Article  Google Scholar 

  145. Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y (2001) Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceania. Bioorg Med Chem Lett 11:1965–1969

    Article  CAS  Google Scholar 

  146. Masuda T, Inaba Y, Takeda Y (2001) Antioxidant mechanism of carnosic acid: structural identification of two oxidation products. Antioxidant mechanism of carnosic acid: structural identification of two oxidation products. J Agric Food Chem 49:5560–5565

    Article  CAS  Google Scholar 

  147. Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J (1998) Functional food science and defence against reactive oxidative species. Br J Nutr 80:S77–S112

    Article  CAS  Google Scholar 

  148. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    Article  CAS  Google Scholar 

  149. Ertas A, Ozturk M, Boga M, Topcu G (2009) Antioxidant and anticholinesterase activity evaluation of ent-kaurane diterpenoids from Sideritis arguta. J Nat Prod 72:500–502

    Article  CAS  Google Scholar 

  150. Roersch C (2010) Piper umbellatum L.: a comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. J Ethnopharmacol 131:522–537

    Article  Google Scholar 

  151. Chiang LC, Ng LT, Chiang W, Chang MY, Lin CC (2003) Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med 69:600–604

    Article  CAS  Google Scholar 

  152. Hughes DA, Wright AJ, Finglas PM et al (1997) The effect of beta-carotene supplementation on the immune function of blood monocytes from healthy male nonsmokers. J Lab Clin Med 129:309–317

    Article  CAS  Google Scholar 

  153. Hughes DA (1999) Effects of carotenoids on human immune function. Proc Nutr Soc 58:713–718

    Article  CAS  Google Scholar 

  154. Watson RR, Prabhala RH, Plezia PM, Alberts DS (1991) Effect of beta-carotene on lymphocyte subpopulations in elderly humans: evidence for a dose–response relationship. Am J Clin Nutr 53:90–94

    CAS  Google Scholar 

  155. Ekam VS, Udosen EO, Chigbu AE (2006) Comparative effect of carotenoid complex from Golden Neo-Life Dynamite (GNLD) and carrot extracted carotenoids on immune parameters in albino Wistar rats. Niger J Physiol Sci 21:1–4

    CAS  Google Scholar 

  156. Cal K, Kupiec K, Sznitowska M (2006) Effects of physicochemical properties of cyclic terpenes on their ex vivo skin absorption and elimination kinetics. J Dermatol Sci 41:137–142

    Article  CAS  Google Scholar 

  157. Moghimi HR, Williams AC, Barry BW (1996) A lamellar matrix model for stratum corneum intercellular lipids III. Effects of terpene penetration enhancers on the release of 5-fluorouracil and oestradiol from the matrix. Int J Pharm 145:37–47

    Article  CAS  Google Scholar 

  158. Williams AC, Barry BW (1991) Terpenes and the lipid-protein partitioning theory of skin penetration enhancers. Pharm Res 8:17–24

    Article  CAS  Google Scholar 

  159. Okabe H, Takayama K, Ogura A, Nagai T (1989) Effect of limonene and related compounds on the percutaneous absorption of indomethacin. Drug Des Deliv 4:313–321

    CAS  Google Scholar 

  160. Narishetty ST, Panchagnula R (2004) Transdermal delivery of zidovudine: effects of terpenes and their mechanism of action. J Control Release 95:367–379

    Article  CAS  Google Scholar 

  161. El-Kattan AF, Asbill CS, Kim N, Michniak BB (2001) The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities. Int J Pharm 215:229–240

    Article  CAS  Google Scholar 

  162. Kirchner EM (1994) Environment, health concerns force shift in use of organic solvents. Chem Eng News 72:13–20

    Google Scholar 

  163. Brown LM, Springer J, Bower M (1992) Chemical substitution for 1,1,1-trichloroethane and methanol in an industrial cleaning operation. J Hazard Mater 29:179–188

    Article  CAS  Google Scholar 

  164. Sakharkar PR, Patil AT (1998) Antimicrobial activity of Cassia alata. Ind J Pharm Sci 60:311–312

    Google Scholar 

  165. Agnihotri S, Vaidya AD (1996) A novel approach to study antibacterial properties of volatile components of selected Indian medicinal herbs. Ind J Exp Biol 34:712–715

    CAS  Google Scholar 

  166. Venugopal PV, Venugopal TV (1994) Antidermatophytic activity of neem (Azadirachta indica) leaves in vitro. Ind J Pharmacol 26:141–143

    Google Scholar 

  167. Park HM, Lee JH, Yaoyao J, Jun HJ, Lee SJ (2011) Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A2A receptors. Biochem Biophys Res Comm 404:345–348

    Article  CAS  Google Scholar 

  168. Mehmood MH, Siddiqi HS, Gilani AH (2011) The antidiarrheal and spasmolytic activities of Phyllanthus emblica are mediated through dual blockade of muscarinic receptors and Ca2+ channels. J Ethnopharmacol 133:856–865

    Article  Google Scholar 

  169. Uchiyama N, Kiuchi F, Ito M, Honda G, Takeda Y, Khodzhimatovd OK, Ashurmetovd OA (2006) Trypanocidal constituents of Dracocephalum komarovi. Tetrahedron 62:4355–4359

    Article  CAS  Google Scholar 

  170. Bronstein AC, Spyker DA, Cantilena LR Jr, Green JL, Rumack BH, Giffin SL (2009) Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 27th annual report. Clin Toxicol (Phila) 48:979–1178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathik S. Brahmkshatriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brahmkshatriya, P.P., Brahmkshatriya, P.S. (2013). Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_120

Download citation

Publish with us

Policies and ethics