Skip to main content

Femtosecond Stimulated Raman Spectroscopy

  • Reference work entry
Encyclopedia of Biophysics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agmon N. The Grotthuss mechanism. Chem Phys Lett. 1995;244:456–62.

    CAS  Google Scholar 

  • Ai HW, Hazelwood KL, et al. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods. 2008;5:401–3.

    CAS  PubMed  Google Scholar 

  • Andel F, Hasson KC, et al. Femtosecond time-resolved spectroscopy of the primary photochemistry of phytochrome. Biospectroscopy. 1997;3:421–33.

    CAS  Google Scholar 

  • Andresen M, Stiel AC, et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol. 2008;26:1035–40.

    CAS  PubMed  Google Scholar 

  • Belevich I, Gorbikova E, et al. Initiation of the proton pump of cytochrome c oxidase. Proc Natl Acad Sci USA. 2010;107:18469–74.

    CAS  PubMed  Google Scholar 

  • Beratan DN, Skourtis SS, et al. Steering electrons on moving pathways. Acc Chem Res. 2009;42:1669–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th ed. New York: W. H Freeman; 2002.

    Google Scholar 

  • Bothma JP, Gilmore JB, et al. The role of quantum effects in proton transfer reactions in enzymes: quantum tunneling in a noisy environment? New J Phys. 2010;12.

    Google Scholar 

  • Castner EW, Maroncelli M. Solvent dynamics derived from optical Kerr effect, dielectric dispersion, and time-resolved Stokes shift measurements: an empirical comparison. J Mol Liq. 1998;77:1–36.

    CAS  Google Scholar 

  • Cerullo G, De Silvestri S. Ultrafast optical parametric amplifiers. Rev Sci Instrum. 2003;74:1–18.

    CAS  Google Scholar 

  • Chalfie M, Tu Y, et al. Green fluorescent protein as a marker for protein expression. Science. 1994;263:802–5.

    CAS  PubMed  Google Scholar 

  • Chattoraj M, King BA, et al. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA. 1996;93:8362–7.

    CAS  PubMed  Google Scholar 

  • Cheng JX, Xie XS. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory and applications. J Phys Chem B. 2004;108:827.

    CAS  Google Scholar 

  • Cleland WW. The low-barrier hydrogen bond in enzymic catalysis. Adv Phys Org Chem. 2010;44:1–17.

    CAS  Google Scholar 

  • Co DT, Lockard JV, et al. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump. Appl Opt. 2010;49:1880–5.

    PubMed  Google Scholar 

  • Coe JD, Levine BG, et al. Ab initio molecular dynamics of excited-state intramolecular proton transfer using multireference perturbation theory. J Phys Chem A. 2007;111:11302–10.

    CAS  PubMed  Google Scholar 

  • Crim FF. Chemical reaction dynamics. Proc Natl Acad Sci USA. 2008;105:12647–8.

    CAS  PubMed  Google Scholar 

  • Dasgupta J, Frontiera RR, et al. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc Natl Acad Sci USA. 2009;106:1784–9.

    CAS  PubMed  Google Scholar 

  • Essen L-O, Mailliet J, et al. The structure of a complete phytochrome sensory module in the Pr ground state. Proc Natl Acad Sci USA. 2008;105:14709–14.

    CAS  PubMed  Google Scholar 

  • Fang C, Frontiera RR, et al. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature. 2009;462:200–4.

    CAS  PubMed  Google Scholar 

  • Fayer MD. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. Annu Rev Phys Chem. 2009;60:21.

    CAS  PubMed  Google Scholar 

  • Freudiger CW, Min W, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322:1857–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frontiera RR, Mathies RA. Femtosecond stimulated Raman spectroscopy. Laser Photon Rev. 2011;5(1):102–13.

    CAS  Google Scholar 

  • Frontiera RR, Shim S, et al. Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy. J Chem Phys. 2008;129:064507.

    PubMed  Google Scholar 

  • Frontiera RR, Dasgupta J, et al. Probing interfacial electron transfer in Coumarin 343 sensitized TiO2 nanoparticles with femtosecond stimulated Raman. J Am Chem Soc. 2009;131:15630–2.

    CAS  PubMed  Google Scholar 

  • Gray HB, Winkler JR. Electron tunneling through proteins. Q Rev Biophys. 2003;36:341–72.

    CAS  PubMed  Google Scholar 

  • Hagfeldt A, Gratzel M. Molecular photovoltaics. Acc Chem Res. 2000;33:269–77.

    CAS  PubMed  Google Scholar 

  • Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev. 2000;100:1755–76.

    CAS  PubMed  Google Scholar 

  • Henderson JN, et al. Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA. 2007;104:6672–7.

    CAS  PubMed  Google Scholar 

  • Jortner J. Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys. 1976;64:4860–4.

    CAS  Google Scholar 

  • Kandori H, et al. Primary process of phytochrome – initial step of photomorphogenesis in green plants. J Am Chem Soc. 1992;114:10958–9.

    CAS  Google Scholar 

  • Kennis JTM, et al. Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci USA. 2004;101:17988–93.

    CAS  PubMed  Google Scholar 

  • Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA. Structural observation of the primary isomerization in vision with femtosecond stimulated Raman. Science. 2005;310:1006–9.

    CAS  PubMed  Google Scholar 

  • Kukura P, McCamant DW, Mathies RA. Femtosecond stimulated Raman spectroscopy. Annu Rev Phys Chem. 2007;58:461–88.

    CAS  PubMed  Google Scholar 

  • Laimgruber S, Schachenmayr H, et al. A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl Phys B. 2006;85:557–64.

    CAS  Google Scholar 

  • Lee SY, Heller EJ. Time-dependent theory of Raman scattering. J Chem Phys. 1979;71:4777–88.

    CAS  Google Scholar 

  • Lee SY, Zhang DH, et al. Theory of femtosecond stimulated Raman spectroscopy. J Chem Phys. 2004;121:3632–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HJ, Svahn E, et al. Intricate role of water in proton transport through cytochrome c oxidase. J Am Chem Soc. 2010;132:16225–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine BG, Martinez TJ. Isomerization through conical intersections. Annu Rev Phys Chem. 2007;58:613.

    CAS  PubMed  Google Scholar 

  • Litvinenko KL, Meech SR. Observation of low frequency vibrational modes in a mutant of green fluorescent protein. Phys Chem Chem Phys. 2004;6:2012.

    CAS  Google Scholar 

  • Lockard JV, Ricks AB, et al. Interrogating the intramolecular charge-transfer state of a julolidine-anthracene donor-acceptor molecule with femtosecond stimulated Raman spectroscopy. J Phys Chem Lett. 2010;1:215–8.

    CAS  Google Scholar 

  • Lombardi JR, Birke RL. A unified view of surface-enhanced Raman scattering. Acc Chem Res. 2009;42:734–42.

    CAS  PubMed  Google Scholar 

  • Long DA. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Amsterdam: Wiley; 2001.

    Google Scholar 

  • Lossau HA, Kummer A, et al. Time-resolved spectroscopy of wild-type and mutant green fluorescent proteins reveals excited state deprotonation consistent with fluorophore-protein interactions. Chem Phys. 1996;213:1–16.

    CAS  Google Scholar 

  • Magnuson A, Anderlund M, et al. Biomimetic and microbial approaches to solar fuel generation. Acc Chem Res. 2009;42:1899–909.

    CAS  PubMed  Google Scholar 

  • Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.

    CAS  Google Scholar 

  • Mathies RA, Cruz CHB, et al. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science. 1988;240:777–9.

    CAS  PubMed  Google Scholar 

  • McCamant DW, Kukura P, et al. Femtosecond broadband stimulated Raman: a new approach for high-performance vibrational spectroscopy. Appl Spectrosc. 2003;57:1317–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCamant DW, Kukura P, et al. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev Sci Instrum. 2004;75:4971–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCamant DW, Kukura P, et al. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J Phys Chem B. 2005;109:10449–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCusker JK. Femtosecond absorption spectroscopy of transition metal charge-transfer complexes. Acc Chem Res. 2003;36:876–87.

    CAS  PubMed  Google Scholar 

  • Mohammed OF, Pines D, et al. Sequential proton transfer through water bridges in acid-base reactions. Science. 2005;310:83–6.

    CAS  PubMed  Google Scholar 

  • Myers AB, Mathies RA. In: Spiro TG, editor. Biological applications of Raman spectroscopy, vol. 2. New York: Wiley; 1987.

    Google Scholar 

  • O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.

    Google Scholar 

  • Ormo M, Cubitt AB, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996;273:1392–5.

    CAS  PubMed  Google Scholar 

  • Ploetz E, Laimgruber S, et al. Femtosecond stimulated Raman microscopy. Appl Phys B. 2007;87:389–93.

    CAS  Google Scholar 

  • Pollard WT, Mathies RA. Analysis of femtosecond dynamic absorption-spectra of nonstationary states. Annu Rev Phys Chem. 1992;43:497–523.

    CAS  PubMed  Google Scholar 

  • Polli D, Luer L, et al. High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. Rev Sci Instrum. 2007;78:103108.

    PubMed  Google Scholar 

  • Reece SY, Nocera DG. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu Rev Biochem. 2009;78:673–99.

    CAS  PubMed  Google Scholar 

  • Remington SJ. Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol. 2006;16:714–21.

    CAS  PubMed  Google Scholar 

  • Renger T, Schlodder E. Primary photophysical processes in photosystem II: bridging the gap between crystal structure and optical spectra. Chemphyschem. 2010;11:1141–53.

    CAS  PubMed  Google Scholar 

  • Rockwell NC, Su YS, et al. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol. 2006;57:837–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudiger W. Events in the phytochrome molecule after irradiation. Photochem Photobiol. 1992;56:803–9.

    CAS  PubMed  Google Scholar 

  • Rudiger W, Thummler F. Phytochrome, the visual pigments in plants. Angew Chem Int Ed Engl. 1991;30:1216–28.

    Google Scholar 

  • Saar BG, Zeng YN, et al. Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew Chem Int Ed Engl. 2009;49:5476–9.

    Google Scholar 

  • Schoenlein RW, Peteanu LA, et al. The first step in vision-femtosecond isomerization of rhodopsin. Science. 1991;254:412–5.

    CAS  PubMed  Google Scholar 

  • Shaner NC, Lin MZ, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods. 2008;5:545–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shim S, Mathies RA. Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman. Appl Phys Lett. 2006;89:121124.

    Google Scholar 

  • Shim S, Mathies RA. Development of a tunable femtosecond stimulated Raman apparatus and its application to beta-carotene. J Phys Chem B. 2008;112:4826–32.

    CAS  PubMed  Google Scholar 

  • Shim S, Stuart CM, et al. Resonance Raman cross-sections and vibronic analysis of rhodamine 6 G from broadband stimulated Raman spectroscopy. Chemphyschem. 2008;9:697–9.

    CAS  PubMed  Google Scholar 

  • Shim S, Dasgupta J, et al. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin’s J and K intermediates. J Am Chem Soc. 2009;131:7592–7.

    CAS  PubMed  Google Scholar 

  • Shimomura O, Johnson FH, et al. Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962;59:223.

    CAS  PubMed  Google Scholar 

  • Sineshchekov VA, Akhobadze VV. Phytochrome states in etiolated pea-seedlings – fluorescence and primary photoreactions at low-temperatures. Photochem Photobiol. 1992;56:743–9.

    CAS  Google Scholar 

  • Spillane KM, Dasgupta J, et al. Homogeneity of phytochrome Cph1 vibronic absorption revealed by resonance Raman intensity analysis. J Am Chem Soc. 2009;131:13946–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinmeyer G, Sutter DH, et al. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science. 1999;286:1507–12.

    CAS  PubMed  Google Scholar 

  • Stoner-Ma D, Melief EH, et al. Proton relay reaction in green fluorescent protein (GFP): polarization-resolved ultrafast vibrational spectroscopy of isotopically edited GFP. J Phys Chem B. 2006;110:22009–18.

    CAS  PubMed  Google Scholar 

  • Sun Z, Qiu XQ, et al. Three-state model for femtosecond broadband stimulated Raman scattering. J Raman Spectrosc. 2008;39:1568–77.

    CAS  Google Scholar 

  • Teuchner K, Schulz M, et al. Excited state behavior of phytochrome Pr. Photochem Photobiol. 1995;62:1076–80.

    CAS  Google Scholar 

  • Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–44.

    CAS  PubMed  Google Scholar 

  • Usman A, Mohammed OF, et al. Excited-state structure determination of the green fluorescent protein chromophore. J Am Chem Soc. 2005;127:11214–5.

    CAS  PubMed  Google Scholar 

  • Vengris M, van Stokkum IHM, et al. Ultrafast excited and ground-state dynamics of the green fluorescent protein chromophore in solution. J Phys Chem A. 2004;108:4587–98.

    CAS  Google Scholar 

  • Wagner JR, Brunzelle JS, et al. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature. 2005;438:325–31.

    CAS  PubMed  Google Scholar 

  • Wang Q, Schoenlein RW, et al. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science. 1994;266:422–4.

    CAS  PubMed  Google Scholar 

  • Weigel A, Ernsting NP. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J Phys Chem B. 2010;114:7879–93.

    CAS  PubMed  Google Scholar 

  • Wilson KC, Lyons B, et al. Two-dimensional femtosecond stimulated Raman spectroscopy: observation of cascading Raman signals in acetonitrile. J Chem Phys. 2009;131:214502.

    PubMed  Google Scholar 

  • Yoon S, McCamant DW, et al. Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay. J Chem Phys. 2005;122:024505.

    PubMed Central  PubMed  Google Scholar 

  • Yoshihara K, Nagasawa Y, et al. Femtosecond intermolecular electron-transfer in condensed systems. J Photochem Photobiol A Chem. 1994;80:169–75.

    CAS  Google Scholar 

  • Yoshizawa M, Kurosawa M. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys Rev A. 2000;61:013808.

    Google Scholar 

  • Zewail AH. Femtochemistry: atomic-scale dynamics of the chemical bond. J Phys Chem A. 2000;104:5660–94.

    CAS  Google Scholar 

  • Zhu LY, Sage JT, et al. Science. 1994;266:629.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishman Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Dasgupta, J., Frontiera, R.R., Fang, C., Mathies, R.A. (2013). Femtosecond Stimulated Raman Spectroscopy. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_134

Download citation

Publish with us

Policies and ethics