Skip to main content

Proteogenomics to Study the Anaerobic Degradation of Aromatic Compounds and Hydrocarbons

  • Reference work entry

Abstract:

The tools of modern genomics and proteomics (proteogenomics) are revolutionizing all aspects of biological research, having also opened new possibilities in the field of anaerobic biodegradation. The presently applied proteogenomic technologies are summarized. Insights into anaerobic biodegradation enabled by the new approaches include the identification of novel alkyl/arylsuccinate synthases for anaerobic n-alkane and 2-methylnaphthalene activation, and the regulation of catabolic pathways in the anaerobic aromatic compound degrading denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. A key step in the proteomic workflow is the detection of substrate-specifically formed proteins (enzyme candidates for the studied degradation pathway) coupled to the quantitative determination of changes in their abundance. Two-dimensional difference gel electrophoresis (2D DIGE) is the current benchmark for gel-based differential protein profiling. The basic principle and experimental procedures of the 2D DIGE technology are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Biemann K, Scoble HA (1987) Characterization by tandem mass spectrometry of structural modifications in proteins. Science 237: 992–998.

    Article  PubMed  CAS  Google Scholar 

  • Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6: 317–339.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24: 168–200.

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Champion KM, Zengler K, Rabus R (1999) Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. J Mol Microbiol Biotechnol 1: 157–164.

    PubMed  CAS  Google Scholar 

  • Chamrad DC, Körting G, Gobom J, Thiele H, Klose J, Meyer HE, Blüggel M (2003) Interpretation of mass spectrometry data for high-throughput proteomics. Anal Bioanal Chem 376: 1014–1022.

    Article  PubMed  CAS  Google Scholar 

  • Coschigano PW, Wehrman TS, Young LY (1998) Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of glycine free radical. Appl Environ Microbiol 64: 1650–1656.

    PubMed  CAS  Google Scholar 

  • Cramer R, Gobom J, Nordhoff E (2005) High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics 2: 407–420.

    Article  PubMed  CAS  Google Scholar 

  • Doherty NS, Littman BH, Reilly K, Swindell AC, Buss JM, Anderson NL (1998) Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel elctrophoresis. Electrophoresis 19: 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Drews O, Görg A (2005) DynaProt 2D: an advanced proteomic database for dynamic online access to proteomes and two-dimensional electrophoresis gels. Nucleic Acids Res 33: D583–D587.

    Article  PubMed  CAS  Google Scholar 

  • Edman P (1949) A method for the determination of amino acid sequence in peptides. Arch Biochem 22: 475.

    PubMed  CAS  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb J-F, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocyne JD, Scott J, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JG (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    Article  PubMed  CAS  Google Scholar 

  • Fodor IK, Nelson DO, Alegria-Hartman M, Robbins K, Langlois RG, Turteltaub KW, Corzett TH, McCutchen-Maloney SL (2005) Statistical challenges in the analysis of two-dimensional difference gel electrophoresis experiments using DeCyderTM. Bioinformatics 21: 3733–3740.

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5: 240–251.

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Cochrane GR (2009) Nucleic Acids Research annual Database Issue and the NAR online Molecular Biology Database Collection in 2009. Nucleic Acids Res 37: D1–4.

    Article  PubMed  CAS  Google Scholar 

  • Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulfate-reducing bacterium. Environ Microbiol 1: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Goesmann A, Linke B, Bartels B, Dondrup M, Krause L, Neuweger H, Oehm S, Paczian T, Wilke A, Meyer F (2005) BRIGEP – the BRIDGE-based genome-transcriptome-proteome browser. Nucleic Acids Res 33: W710–W716.

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037–1053.

    Article  PubMed  Google Scholar 

  • Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4: 3665–3685.

    Article  PubMed  Google Scholar 

  • Graham DRM, Elliott ST, Van Eyk JE (2005) Broad-based proteomic strategies: a practical guide to proteomics and functional screening. J Physiol 563: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10: 376–385.

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 17: 994–999.

    Article  CAS  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90: 5011–5015.

    Article  PubMed  CAS  Google Scholar 

  • Heukeshoven J, Dernick R (1988) Improved silver staining procedure for fast staining in PhastSystem development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9: 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Höffken HW, Duong M, Friedrich T, Breuer M, Hauer B, Reinhardt R, Rabus R, Heider J (2006) Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 45: 82–93.

    Article  PubMed  Google Scholar 

  • Hufnagel P, Rabus R (2006) Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying “Aromatoleum” sp. strain EbN1. J Mol Microbiol Biotechnol 11: 53–81.

    Article  PubMed  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60: 2299–2301.

    Article  PubMed  CAS  Google Scholar 

  • Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14: 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26: 231–243.

    PubMed  CAS  Google Scholar 

  • Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276: 21381–21386.

    Article  PubMed  CAS  Google Scholar 

  • Kube M, Heider J, Amann J, Hufnagel P, Kühner S, Beck A, Reinhardt R, Rabus R (2004) Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 181: 182–194.

    Article  PubMed  CAS  Google Scholar 

  • Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 187: 1493–1503.

    Article  PubMed  Google Scholar 

  • Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22: 906–918.

    Article  PubMed  CAS  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Liolios K, Mavrommatis K, Tavernarakis N, Kyrpides NC (2008) The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 36: D475–D479.

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437–473.

    Article  PubMed  CAS  Google Scholar 

  • Marengo E, Robotti E, Antonucci F, Cecconi D, Campostrini N, Righetti PG (2005) Numerical approaches for quantitative analysis of two-dimensional maps: a review of commercial software and home-made systems. Proteomics 5: 654–666.

    Article  PubMed  CAS  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382: 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, Gevaert K, Vandekerckhove J, Apweiler R (2005) PRIDE: the proteomics identifications database. Proteomics 5: 3537–3545.

    Article  PubMed  CAS  Google Scholar 

  • McLuckey SA, Van Berkel GJ, Goeringer DE, Glish GL (1994) Ion trap mass spectrometry. Using high-pressure ionization. Anal Chem 66: 737A–743A.

    Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15: 1767–1776.

    Article  PubMed  CAS  Google Scholar 

  • Moritz B, Meyer HE (2003) Approaches for the quantification of protein concentration ratios. Proteomics 3: 2208–2220.

    Article  PubMed  CAS  Google Scholar 

  • Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3: 1912–1919.

    Article  PubMed  CAS  Google Scholar 

  • Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2008) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulphate-reducing bacteria. Environ Microbiol 66: 2743–2747.

    Google Scholar 

  • Nishihara JC, Champion K (2002) Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis 23: 2203–2215.

    Article  PubMed  CAS  Google Scholar 

  • Nordhoff E, Egelhofer V, Giavalisco P, Eickhoff H, Horn M, Przewieslik T, Theiss D, Schneider U, Lehrach H, Gobom J (2001) Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry: an analytical challenge for studying complex protein mixtures. Electrophoresis 22: 2844–2855.

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021.

    PubMed  Google Scholar 

  • Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1: 376–386.

    Article  PubMed  CAS  Google Scholar 

  • Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B 771: 3–31.

    Article  CAS  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163: 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Widdel F (1996) Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl Environ Microbiol 62: 1238–1241.

    PubMed  CAS  Google Scholar 

  • Rabus R, Wilkes H, Schramm A, Harms G, Behrends A, Amann R, Widdel F (1999) Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the β-subclass of Proteobacteria. Environ Microbiol 1: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl) succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183: 1707–1715.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Kube M, Beck A, Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178: 506–516.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Reinsinger V, Eichacker LA (2007) How to analyze protein complexes by 2D blue native SDS-PAGE. Proteomics 7(Suppl 1): 6–16.

    Article  Google Scholar 

  • Safinowski M, Meckenstock RU (2006) Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environ Microbiol 8: 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt F, Donahoe S, Hagens K, Mattow J, Schaible UE, Kaufmann SHE, Aebersold R, Jungblut PR (2004) Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 3: 24–42.

    PubMed  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5: 4–15.

    Article  PubMed  CAS  Google Scholar 

  • Schrader W, Klein HW (2004) Liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS): an early overview. Anal Bioanal Chem 379: 1013–1024.

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3: 1181–1195.

    Google Scholar 

  • Sitek B, Potthoff S, Schulenborg T, Stegbauer J, Vinke T, Rump L-C, Meyer HE, Vonend O, Stühler K (2006) Novel approaches to analyse glomerular proteins from smallest scale murine and human samples using DIGE saturation labeling. Proteomics 6: 4337–4345.

    Article  PubMed  CAS  Google Scholar 

  • Suckau D, Resemann A, Schürenberg M, Hufnagel P, Franzen J, Holle A (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem 376: 952–965.

    Article  PubMed  CAS  Google Scholar 

  • Tannu NS, Hemby SE (2006) Two-dimensional fluorescence gel electrophoresis for comparative proteomics profiling. Nat Protoc 1: 1732–1742.

    Article  PubMed  CAS  Google Scholar 

  • Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1: 377–396.

    Article  PubMed  CAS  Google Scholar 

  • Trautwein K, Kühner S, Wöhlbrand L, Halder T, Kuchta K, Steinbüchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74: 2267–2274.

    Article  PubMed  CAS  Google Scholar 

  • Turinsky AL, Ah-Seng AC, Gordon PMK, Stromer JN, Taschuk ML, Xu EW, Sensen CW (2004) Bioinformatics visualization and integration with open standards; the Bluejay genomic browser. In Silico Biol 5: 187–198.

    Google Scholar 

  • Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071–2077.

    Article  PubMed  Google Scholar 

  • Venter JC, Levy S, Stockwell T, Remington K, Halpern A (2003) Massive parallelism, randomness and genomic advances. Nature Genet 33: 219–227.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan S, Ünlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1: 1351–1358.

    Article  PubMed  CAS  Google Scholar 

  • Von Eggeling F, Gawriljuk A, Fiedler W, Ernst G, Claussen U, Klose J, Romer I (2001) Fluorescent dual color 2D-protein gel electrophoresis for rapid detection of differences in protein pattern with standard image analysis software. Int J Mol Med 8: 373–377.

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates 3rd JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242–247.

    Article  PubMed  CAS  Google Scholar 

  • Winkler W, Zellner M, Diestinger M, Babeluk R, Marchetti M, Goll A, Zehetmayer S, Bauer P, Rappold E, Miller I, Roth E, Allmaier G, Oehler R (2008) Biological variation of the platelet proteome in the elderly population and its implication for biomarker research. Mol Cell Proteomics 7: 193–203.

    PubMed  CAS  Google Scholar 

  • Wöhlbrand L, Rabus R (2008) Development of a genetic system for the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. J Mol Microbiol Biotechnol, doi: 10.1159/000159194.

    Google Scholar 

  • Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J, Reinhardt R, Rabus R (2007) Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1. Proteomics 7: 2222–2239.

    Article  PubMed  Google Scholar 

  • Wöhlbrand L, Wilkes H, Halder T, Rabus R (2008) Anaerobic degradation of p-ethylphenol by “Aromatoleum aromaticum” strain EbN1: pathway, regulation and involved proteins. J Bacteriol 190: 5699–5709.

    Article  PubMed  Google Scholar 

  • Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72: 2482–2489.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Rabus or K. Trautwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rabus, R., Trautwein, K. (2010). Proteogenomics to Study the Anaerobic Degradation of Aromatic Compounds and Hydrocarbons. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_344

Download citation

Publish with us

Policies and ethics