Skip to main content

Porous Silicon Optical Biosensors

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

The rapidly developing field of porous silicon-based biosensors that utilize optical transduction is comprehensively reviewed by distinguishing the differing strategies for small- and moderate-size biomolecular analytes and the challenges with analysis of complex biofluids. A number of topics are identified for future research that should lead to one-shot disposable chip-based systems becoming commercially avialable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allcock P, Snow PA (2001) Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors. J Appl Phys 90:5052

    Article  Google Scholar 

  • Alvarez SD, Schwartz MP, Migliori B, Rang CU, Chao L, Sailor MJ (2007) Using a porous silicon photonic crystal for bacterial cell-based biosensing. Phys Status Solidi A 204:1439

    Article  Google Scholar 

  • Bonanno LM, DeLouise LA (2007a) Whole blood optical biosensor. Biosens Bioelectron 23:444

    Article  Google Scholar 

  • Bonanno LM, DeLouise LA (2007b) Steric crowding effects on target detection in an affinity biosensor. Langmuir 23:5817

    Article  Google Scholar 

  • Bonanno LM, DeLouise LA (2010) Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal Chem 82:714

    Article  Google Scholar 

  • Bonanno LM, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6:1755

    Article  Google Scholar 

  • Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423

    Article  Google Scholar 

  • Byrne R, Diamond D (2006) Chemo/bio-sensor networks. Nat Mater 5:421

    Article  Google Scholar 

  • Chan S, Li Y, Rothberg LJ, Miller BL, Fauchet PM (2001a) Nanoscale silicon microcavities for biosensing. Mater Sci Eng C Biomimetic Supramol Syst 15:277

    Article  Google Scholar 

  • Chan S, Horner SR, Fauchet PM, Miller BL (2001b) Identification of gram negative bacteria using nanoscale silicon microcavities. J Am Chem Soc 123:11797

    Article  Google Scholar 

  • Chaudhari PS, Gokarna A, Kulkarni M, Karve MS, Bhoraskar S (2005) Porous silicon as an entrapping matrix for the immobilization of urease. Sens Actuators B 107:258

    Article  Google Scholar 

  • Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82:909

    Article  Google Scholar 

  • Dancil KPS, Greiner DP, Sailor MJ (1999) A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J Am Chem Soc 121:7925

    Article  Google Scholar 

  • De Stefano L, Arcari P, Lamberti A, Sanges C, Rotiroti L, Rea I, Rendina I (2007) DNA optical detection based on porous silicon technology: from biosensors to biochips. Sensors 7:214

    Article  Google Scholar 

  • DeLouise LA, Kou PM, Miller BL (2005) Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Anal Chem 77:3222

    Article  Google Scholar 

  • Dhanekar S, Jain S (2013) Porous silicon biosensor: current status. Biosens Bioelectron 41:54

    Article  Google Scholar 

  • Di Francia G, La Ferrara V, Manzo S, Chiavarini S (2005) Towards a label-free optical porous silicon DNA sensor. Biosens Bioelectron 21:661

    Article  Google Scholar 

  • Dian J, Vrkoslav V, Jelinek I (2010) Recognition enhancement of oxidized and methyl-10-undecenoate functionalized porous silicon in gas phase photoluminescence sensing. Sens Actuators B 147:406

    Article  Google Scholar 

  • Estephan E, Saab M-B, Agarwal V, Cuisinier FJG, Larroque C, Gergely C (2011) Peptides for the biofunctionalization of silicon for use in optical sensing with porous silicon microcavities. Adv Funct Mater 21:2003

    Article  Google Scholar 

  • Furbert P, Lu C, Winograd N, DeLouise L (2008) Label-free optical detection of peptide synthesis on a porous silicon scaffold/sensor. Langmuir 24:2908

    Article  Google Scholar 

  • Guan B, Magenau A, Kilian KA, Ciampi S, Gaus K, Reece PJ, Gooding JJ (2011a) Mesoporous silicon photonic crystal microparticles: towards single-cell optical biosensors. Faraday Discuss 149:301

    Article  Google Scholar 

  • Guan B, Ciampi S, Le Saux G, Gaus K, Reece PJ, Gooding JJ (2011b) Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using “click” chemistry. Langmuir 27:328

    Article  Google Scholar 

  • Gupta B, Zhu Y, Guan B, Reece PJ, Gooding JJ (2013) Functionalised porous silicon as a biosensor: emphasis on monitoring cells in vivo and in vitro. Analyst 138:3593

    Article  Google Scholar 

  • Jalkanen T, Mäkilä E, Suzuki YI, Urata T, Fukami K, Sakka T, Salonen J, Ogata YH (2012) Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions. Adv Funct Mater 22:3890

    Article  Google Scholar 

  • Jane A, Dronov R, Hodges A, Voelcker NH (2009) Porous silicon biosensors on the advance. Trends Biotechnol 27:230

    Article  Google Scholar 

  • Janshoff A, Dancil KPS, Steinem C, Greiner DP, Lin VSY, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR (1998) Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc 120:12108

    Article  Google Scholar 

  • Kilian KA, Boecking T, Gaus K, Gal M, Gooding JJ (2007) Peptide-modified optical filters for detecting protease activity. ACS Nano 1:355

    Article  Google Scholar 

  • Kilian KA, Boecking T, Gooding JJ (2009) The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun 6:630

    Article  Google Scholar 

  • Kilian KA, Lai LMH, Magenau A, Cartland S, Boecking T, Di Girolamo N, Gal M, Gaus K, Gooding JJ (2009b) Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett 9:2021

    Article  Google Scholar 

  • Krepker MA, Segal E (2013) Dual-functionalized porous Si/hydrogel hybrid for label-free biosensing of organophosphorus compounds. Anal Chem 85:7353

    Google Scholar 

  • Latterich M, Corbeil J (2008) Label-free detection of biomolecular interactions in real time with a nano-porous silicon-based detection method. Proteome Sci 6:31

    Google Scholar 

  • Lauerhaas JM, Credo GM, Heinrich JL, Sailor MJ (1992) Reversible luminescence quenching of porous Si by solvents. J Am Chem Soc 114:1911

    Article  Google Scholar 

  • Ligler FS (2008) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81:519

    Article  Google Scholar 

  • Lim DV (2003) Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proc IEEE 91:902

    Article  Google Scholar 

  • Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840

    Article  Google Scholar 

  • Lorenzo E, Oton LC, Capuj NE, Ghulinyan M, Navarro-Urrios D, Gaburro Z, Pavesi L (2005) Porous silicon-based rugate filters. Appl Opt 44:5415

    Article  Google Scholar 

  • Massad-Ivanir N, Shtenberg G, Zeidman T, Segal E (2010) Construction and characterization of porous SiO(2)/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater 20:2269

    Article  Google Scholar 

  • Massad-Ivanir N, Shtenberg G, Tzur A, Krepker MA, Segal E (2011) Engineering nanostructured porous SiO(2) surfaces for bacteria detection via “direct cell capture”. Anal Chem 83:3282

    Article  Google Scholar 

  • Massad-Ivanir N, Shtenberg G, Segal E (2012) Advancing nanostructured porous Si-based optical transducers for label free bacteria detection. Adv Exp Med Biol 733:37

    Article  Google Scholar 

  • Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237

    Article  Google Scholar 

  • Miller BL (2010) Nano-structured silicon optical sensors. In: Zourob MLA (ed) Optical guided-wave chemical and biosensors II, vol 8, p 3 Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  • Nirschl M, Reuter F, Voros J (2011) Review of transducers principles for label-free biomolecular interaction analysis. Biosensors 1:70

    Article  Google Scholar 

  • Orosco MM, Pacholski C, Miskelly GM, Sailor MJ (2006) Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv Mater 18:1393

    Article  Google Scholar 

  • Orosco MM, Pacholski C, Sailor MJ (2009) Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol 4:255

    Article  Google Scholar 

  • Ouyang H, Christophersen M, Viard R, Miller BL, Fauchet PM (2005) Macroporous silicon microcavities for macromolecule detection. Adv Funct Mater 15:1851

    Article  Google Scholar 

  • Pace S, Seantier B, Belamie E, Lautredou N, Sailor MJ, Milhiet P-E, Cunin F (2012) Characterization of phospholipid bilayer formation on a thin film of porous SiO2 by reflective interferometric Fourier transform spectroscopy (RIFTS). Langmuir 28:6960

    Article  Google Scholar 

  • Pacholski C (2013) Photonic crystal sensors based on porous silicon. Sensors 13:4694

    Article  Google Scholar 

  • Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J Am Chem Soc 127:11636

    Article  Google Scholar 

  • Pacholski C, Yu C, Miskelly GM, Godin D, Sailor MJ (2006) Reflective interferometric Fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2. J Am Chem Soc 128:4250

    Article  Google Scholar 

  • Pal S, Guillermain E, Sriram R, Miller BL, Fauchet PM (2011) Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing. Biosens Bioelectron 26:4024

    Article  Google Scholar 

  • Pal S, Fauchet PM, Miller BL (2012) 1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition. Anal Chem 84:8900

    Google Scholar 

  • Qiao H, Guan B, Gooding JJ, Reece PJ (2010) Protease detection using a porous silicon based Bloch surface wave optical biosensor. Opt Express 18:15174

    Article  Google Scholar 

  • Rea I, Lamberti A, Rendina I, Coppola G, Gioffre M, Iodice M, Casalino M, De Tommasi E, De Stefano L (2010) Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 107:014513

    Article  Google Scholar 

  • Reardon KF, Zhong Z, Lear KL (2009) Environmental applications of photoluminescence-based biosensors. In: Rao G (ed) Optical sensor systems in biotechnology, vol 116, p 99, Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  • Rong G, Najmaie A, Sipe JE, Weiss SM (2008) Nanoscale porous silicon waveguide for label-free DNA sensing. Biosens Bioelectron 23:1572

    Article  Google Scholar 

  • Sa’ar A (2009) Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J Nanophoton 3:1

    Google Scholar 

  • Sailor MJ (2007) Color me sensitive: amplification and discrimination in photonic silicon nanostructures. ACS Nano 1:248

    Article  Google Scholar 

  • Sailor MJ, Wu EC (2009) Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles. Adv Funct Mater 19:3195

    Article  Google Scholar 

  • Schoning MJ, Ronkel F, Crott M, Thust M, Schultze JW, Kordos P, Luth H (1997) Miniaturization of potentiometric sensors using porous silicon microtechnology. Electrochim Acta 42:3185

    Article  Google Scholar 

  • Schwartz MP, Derfus AM, Alvarez SD, Bhatia SN, Sailor MJ (2006) The smart petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22:7084

    Article  Google Scholar 

  • Schwartz MP, Alvarez SD, Sailor MJ (2007) Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: binding of protein a to immunoglobulins derived from different species. Anal Chem 79:327

    Article  Google Scholar 

  • Sciacca B, Frascella F, Venturello A, Rivolo P, Descrovi E, Giorgis F, Geobaldo F (2009) Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules. Sens Actuators B 137:467

    Article  Google Scholar 

  • Sciacca B, Secret E, Pace S, Gonzalez P, Geobaldo F, Quignard F, Cunin F (2011) Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J Mater Chem 21:2294

    Article  Google Scholar 

  • Shang Y, Zhao W, Xu E, Tong C, Wu J (2010) FTRIFS biosensor based on double layer porous silicon as a LC detector for target molecule screening from complex samples. Biosens Bioelectron 25:1056

    Article  Google Scholar 

  • Shang J, Cheng F, Dubey M, Kaplan JM, Rawal M, Jiang X, Newburg DS, Sullivan PA, Andrade RB, Ratner DM (2012) An organophosphonate strategy for functionalizing silicon photonic biosensors. Langmuir 28:3338

    Article  Google Scholar 

  • Shtenberg G, Massad-Ivanir N, Engin S, Sharon M, Fruk L, Segal E (2012) DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers. Nanoscale Res Lett 7:443

    Google Scholar 

  • Singh S, Sharma SN, Govind, Shivaprasad SM, Lal M, Khan MA (2009) Nanostructured porous silicon as functionalized material for biosensor application. J Mater Sci Mater Med 20:181

    Article  Google Scholar 

  • Starodub VM, Fedorenko LL, Sisetskiy AP, Starodub NF (1999) Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sens Actuators B 58:409

    Article  Google Scholar 

  • Starodub NF, Shulyak LM, Shmyryeva OM, Pylipenko IV, Pylipenko LN, Mel’nichenko MM (2009) Nanostructured silicon and its application as the transducer in immune biosensors. In: Mikhalovsky SKA (ed) Biodefence: advanced materials and methods for health protection. p 87 Springer - Dordrecht, Netherlands

    Google Scholar 

  • Szili EJ, Jane A, Low SP, Sweetman M, Macardle P, Kumar S, Smart RSC, Voelcker NH (2011) Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sens Actuators B 160:341

    Article  Google Scholar 

  • Thust M, Schoning MJ, Frohnhoff S, ArensFischer R, Kordos P, Luth H (1996) Porous silicon as a substrate material for potentiometric biosensors. Meas Sci Technol 7:26

    Article  Google Scholar 

  • Tsang CK, Kelly TL, Sailor MJ, Li YY (2012) Highly stable porous silicon–carbon composites as label-free optical biosensors. ACS Nano 6:10546

    Google Scholar 

  • Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540

    Article  Google Scholar 

  • Weiss SM, Rong G, Lawrie JL (2009) Current status and outlook for silicon-based optical biosensors. Phys E 41:1071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgi Shtenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Shtenberg, G., Segal, E. (2014). Porous Silicon Optical Biosensors. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_87

Download citation

Publish with us

Policies and ethics