Skip to main content

Single and Multiple Buffer Processing

  • Reference work entry
  • First Online:

Years and Authors of Summarized Original Work

  • 2004; Kesselman, Mansour

  • 2012; Keslassy, Kogan, Scalosub, Segal

  • 2012; Kesselman, Kogan, Segal

  • 2012, 2013; Kogan, López-Ortiz, Nikolenko, Sirotkin

  • 2014; Eugster, Kogan, Nikolenko, Sirotkin

Footnote 1

Problem Definition

Buffer management policies are online algorithms that control a limited buffer of packets with homogeneous or heterogeneous characteristics, deciding whether to accept new packets when they arrive, which packets to process and transmit, and possibly whether to push out packets already residing in the buffer. Although settings differ, the problem is always to achieve the best possible competitive ratio, i.e., find a policy with good worst-case guarantees in comparison with an optimal offline clairvoyant algorithm. The policies themselves are often simple, simplicity being an important advantage for implementation in switches; the hard problem is to find proofs of lower and especially upper bounds for their competitive ratios....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The work of Sergey Nikolenko was partially supported by the Government of the Russian Federation (grant 14.Z50.31.0030).

Recommended Reading

  1. Aiello W, Kesselman A, Mansour Y (2008) Competitive buffer management for shared-memory switches. ACM Trans Algorithms 5(1):1–16

    Article  MathSciNet  Google Scholar 

  2. Andelman N, Mansour Y, Zhu A (2003) Competitive queueing policies for QoS switches. In: Proceedings of the 4th annual ACM-SIAM symposium on discrete algorithms, Baltimore, pp 761–770

    Google Scholar 

  3. Azar Y, Litichevskey A (2006) Maximizing throughput in multi-queue switches. Algorithmica 45(1):69–90

    Article  MathSciNet  MATH  Google Scholar 

  4. Azar Y, Richter Y (2005) Management of multi-queue switches in QoS networks. Algorithmica 43(1-2):81–96

    Article  MathSciNet  MATH  Google Scholar 

  5. Azar Y, Richter Y (2006) An improved algorithm for CIOQ switches. ACM Trans Algorithms 2(2):282–295

    Article  MathSciNet  MATH  Google Scholar 

  6. Englert M, Westermann M (2009) Lower and upper bounds on FIFO buffer management in QoS switches. Algorithmica 53(4):523–548

    Article  MathSciNet  MATH  Google Scholar 

  7. Epstein L, van Stee R (2004) Buffer management problems. SIGACT News 35(3):58–66

    Article  Google Scholar 

  8. Eugster P, Kogan K, Nikolenko SI, Sirotkin AV (2014) Shared-memory buffer management for heterogeneous packet processing. In: Proceedings of the 34th international conference on distributed computing systems, Madrid

    Google Scholar 

  9. Goldwasser M (2010) A survey of buffer management policies for packet switches. SIGACT News 41(1):100–128

    Article  Google Scholar 

  10. Hahne EL, Kesselman A, Mansour Y (2001) Competitive buffer management for shared-memory switches. In: 13th ACM symposium on parallel algorithms and architectures, Crete Island, pp 53–58

    Google Scholar 

  11. Kawahara J, Kobayashi K, Maeda T (2012) Tight analysis of priority queuing policy for egress traffic. CoRR abs/1207.5959

    Google Scholar 

  12. Keslassy I, Kogan K, Scalosub G, Segal M (2012) Providing performance guarantees in multipass network processors. IEEE/ACM Trans Netw 20(6):1895–1909

    Article  Google Scholar 

  13. Kesselman A, Kogan K, Segal M (2008) Best effort and priority queuing policies for buffered crossbar switches. In: Structural information and communication complexity, 15th international colloquium (SIROCCO 2008), Villars-sur-Ollon, 170–184 http://dx.doi.org/10.1007/978-3-540-69355-0_15

  14. Kesselman A, Mansour Y (2004) Harmonic buffer management policy for shared memory switches. Theor Comput Sci 324(2-3):161–182

    Article  MathSciNet  MATH  Google Scholar 

  15. Kesselman A, Rosén A (2006) Scheduling policies for CIOQ switches. J Algorithms 60(1):60–83

    Article  MathSciNet  MATH  Google Scholar 

  16. Kesselman A, Rosén A (2008) Controlling CIOQ switches with priority queuing and in multistage interconnection networks. J Interconnect Netw 9(1/2):53–72

    Article  Google Scholar 

  17. Kesselman A, Lotker Z, Mansour Y, Patt-Shamir B, Schieber B, Sviridenko M (2004) Buffer overflow management in QoS switches. SIAM J Comput 33(3):563–583

    Article  MathSciNet  MATH  Google Scholar 

  18. Kesselman A, Mansour Y, van Stee R (2005) Improved competitive guarantees for QoS buffering. Algorithmica 43(1-2):63–80

    Article  MathSciNet  MATH  Google Scholar 

  19. Kesselman A, Kogan K, Segal M (2010) Packet mode and QoS algorithms for buffered crossbar switches with FIFO queuing. Distrib Comput 23(3):163–175

    Article  MATH  Google Scholar 

  20. Kesselman A, Kogan K, Segal M (2012) Improved competitive performance bounds for CIOQ switches. Algorithmica 63(1–2):411–424

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi K, Miyazaki S, Okabe Y (2009) Competitive buffer management for multi-queue switches in QoS networks using packet buffering algorithms. In: Proceedings of the 21st ACM symposium on parallelism in algorithms and architectures (SPAA), Portland, OR, USA, pp 328–336

    Google Scholar 

  22. Kogan K, López-Ortiz A, Nikolenko S, Scalosub G, Segal M (2014) Balancing Work and Size with Bounded Buffers. In: Proceedings of the 6th international conference on communication systems and networks (COMSNETS 2014), Bangalore, pp 1–8

    Google Scholar 

  23. Kogan K, López-Ortiz A, Nikolenko SI, Sirotkin AV (2012) A taxonomy of semi-FIFO policies. In: Proceedings of the 31st IEEE international performance computing and communications conference (IPCCC2012), Austin, pp 295–304

    Google Scholar 

  24. Kogan K, López-Ortiz A, Nikolenko SI, Sirotkin AV, Tugaryov D (2012) FIFO queueing policies for packets with heterogeneous processing. In: Proceedings of the 1st Mediterranean conference on algorithms (MedAlg 2012), Ein Gedi. Lecture notes in computer science, vol 7659, pp 248–260

    Google Scholar 

  25. Kogan K, López-Ortiz A, Nikolenko SI, Sirotkin A (2013) Multi-queued network processors for packets with heterogeneous processing requirements. In: Proceedings of the 5th international conference on communication systems and networks (COMSNETS 2013), Bangalore, pp 1–10

    Google Scholar 

  26. Zhu A (2004) Analysis of queueing policies in QoS switches. J Algorithms 53(2):137–168

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Nikolenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Nikolenko, S.I., Kogan, K. (2016). Single and Multiple Buffer Processing. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_535

Download citation

Publish with us

Policies and ethics