Skip to main content

Biomarkers (Molecular Fossils)

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Biological marker molecules; Geochemical fossils; Molecular fossils

Definition

Biomarkers are the molecular fossils of lipids and other natural products. In sedimentary environments, lipids that escape the remineralization process are commonly chemically reduced to hydrocarbon skeletons. Encased in sedimentary rocks, these skeletons can remain intact over hundreds of millions of years. The structure of biomarkers is often directly related to their precursor lipids and may be diagnostic for a specific group or groups of organisms. Diagnostic biomarkers are used to obtain information about the composition of past (microbial) ecosystems or to determine the first occurrence of organisms in the geological record. As many organisms prefer specific habitats, and as lipid compositions of individual organisms are frequently adjusted to changing physical and chemical conditions,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Adam, P., Schmid, J. C., Mycke, B., Strazielle, C., Connan, J., Huc, A., Riva, A., and Albrecht P., 1993. Structural investigation of non-polar sulfur cross-linked macromolecules in petroleum. Geochimica et Cosmochimica Acta, 57, 3395–3419.

    Article  Google Scholar 

  • Albrecht, P., and Ourisson, G., 1969. Diagenèse des hydrocarbures saturés dans une série sédimentaire épaisse (Douala, Cameroun). Geochimica et Cosmochimica Acta, 33, 138–142.

    Article  Google Scholar 

  • Atahan, P., Grice, K., and Dodson, J., 2007. Human influence on holocene environmental change in the Yangtze river delta: a combined biomarker, δ13C, 14C, pollen and charcoal approach. The Holocene, 17, 507–515.

    Article  Google Scholar 

  • Audino, M., Grice, K., Alexander, R., and Kagi, R. I., 2002. Macrocyclic alkanes in crude oils from the algaenan of Botryococcus braunii. Organic Geochemistry, 33, 979–984.

    Article  Google Scholar 

  • Barghoorn, E. S., 1957. Origin of life. Geological Society of America (Memoir), 67, 75–85.

    Google Scholar 

  • Barghoorn, E. S., Meinschein, W. G., and Schopf, J. W., 1965. Paleobiology of a Precambrian shale. Science, 148, 461–472.

    Article  Google Scholar 

  • Berthelot, M., 1866. Sur l’origine des carbures et des combustibles minéraux. Annales de Chimie Physique, 9, 481–483.

    Google Scholar 

  • Bian, L., Hinrichs, K. U., Xie, T., Brassell, S. C., Iversen, N., Fossing, H., Jørgensen, B. B., Sylva, S. P., and Hayes, J. M., 2001. Algal and archaeal polyisoprenoids in a recent marine sediment: molecular isotopic evidence for anaerobic oxidation of methane. Geochemistry, Geophysics, Geosystems, 2, 2000GC000112.

    Google Scholar 

  • Bird, C. W., Lynch, J. M., Pirt, F. J., Reid, W. W., Brooks, C. J. W., and Middleditch, B. S., 1971. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature, 230, 473–474.

    Article  Google Scholar 

  • Blokker, P., Schouten, S., De Leeuw, J. W., Sinninghe Damsté, J. S., and Van Den Ende, H., 2000. A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochimica et Cosmochimica Acta, 64, 2055–2065.

    Article  Google Scholar 

  • Blokker, P., Van Bergen, P. F., Pancost, R. D., Collinson, M. E., Sinninghe Damsté, J. S., and De Leeuw, J. W., 2001. The chemical structure of Gloeocapsamorpha prisca microfossils: implication for their origin. Geochimica et Cosmochimica Acta, 65, 885–900.

    Article  Google Scholar 

  • Bode, H. B., Zeggel, B., Silakowski, B., Wenzel, S. C., Hans, R., and Müller, R., 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Molecular Microbiology, 47, 471–481.

    Article  Google Scholar 

  • Bosch, H. J., Sinninghe Damsté, J. S., and De Leeuw, J. W., 1998. Molecular palaeontology of eastern Mediterranean sapropels: evidence for photic zone euxinia. Proceedings of the Ocean Drilling Program, Scientific Results, 160, 285–295.

    Google Scholar 

  • Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320, 129–133.

    Article  Google Scholar 

  • Brocks, J. J., and Banfield, J., 2009. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nature Reviews Microbiology, 7, 601.

    Article  Google Scholar 

  • Brocks, J. J., and Schaeffer, P., 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1,640 Ma Barney Creek formation. Geochimica et Cosmochimica Acta, 72, 1396–1414.

    Article  Google Scholar 

  • Brocks, J. J., and Summons, R. E., 2004. Sedimentary hydrocarbons, biomarkers for early life. In Schlesinger, W. H. (ed.), Treatise on Geochemistry, Vol 8, Biogeochemistry. Oxford: Elsevier-Pergamon, pp. 63–115.

    Google Scholar 

  • Brocks, J. J., Summons, R. E., Buick, R., and Logan, G. A., 2003a. Origin and significance of aromatic hydrocarbons in giant iron ore deposits of the late Archean Hamersley Basin in Western Australia. Organic Geochemistry, 34, 1161–1175.

    Article  Google Scholar 

  • Brocks, J. J., Buick, R., Logan, G. A., and Summons, R. E., 2003b. Composition and syngeneity of molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochimica et Cosmochimica Acta, 67, 4289–4319.

    Article  Google Scholar 

  • Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A., and Bowden, S. A., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature, 437, 866–870.

    Article  Google Scholar 

  • Brocks, J. J., Grosjean, E., and Logan, G. A., 2008. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta, 72, 871–888.

    Article  Google Scholar 

  • Burlingame, A. L., Haug, P., Belsky, T., and Calvin, M., 1965. occurrence of biogenic steranes and pentacyclic triterpanes in an Eocene shale and in an early Precambrian shale (2.7 x 109 years). Proceedings of the National Academy of Sciences, 54, 406.

    Article  Google Scholar 

  • Carrillo-Hernandez, T., Schaeffer, P., Adam, P., Albrecht, P., Derenne, S., and Largeau, C., 2003. Remarkably well preserved archaeal and bacterial membrane lipids in 140 million years old sediments from the Russion platform (Kashpir Oil Shales, Upper Jurassic). 21st International Meeting on Organic Geochemistry. Poland: Kraków, pp. 77–78.

    Google Scholar 

  • Collister, J. W., Summons, R. E., Lichtfouse, E., and Hayes, J. M., 1992. An isotopic biogeochemical study of the Green River oil shale. Organic Geochemistry, 19, 265–276.

    Article  Google Scholar 

  • Cox, H. C., De Leeuw, J. W., Schenk, P. A., Van Konigsveld, H., Jansen, J. C., Van De Graaf, B., Van Geerstein, V. J., Kanters, J. A., Kruk, C., and Jans, A. W. H., 1986. Bicadinane, a C30 pentacyclic isoprenoid hydrocarbon found in crude oil. Nature, 319, 316–318.

    Article  Google Scholar 

  • David, M., Metzger, P., and Casadevall, E., 1988. Two cyclobotryococcenes from the B race of the green alga Botryococcus braunii. Phytochemistry, 27, 2863.

    Article  Google Scholar 

  • De Leeuw, J. W., and Largeau, C., 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In Engel, M. H., and Macko, S. A. (ed.), Organic Geochemistry, Principles and Applications. New York: Plenum Press, pp. 23–72.

    Chapter  Google Scholar 

  • De Leeuw, J., Versteegh, G., and Van Bergen, P., 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecology, 182, 209.

    Google Scholar 

  • De Rosa, M., and Gambacorta, A., 1988. The lipids of archaebacteria. Progress in Lipid Research, 27, 153–175.

    Article  Google Scholar 

  • Del Rio, J. C., and Philp, R. P., 1999. Field ionization mass spectrometric study of high molecular weight hydrocarbons in a crude oil and a solid bitumen. Organic Geochemistry, 30, 279–286.

    Article  Google Scholar 

  • Delong, E. F., 1992. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences, 89, 5685–5689.

    Article  Google Scholar 

  • Dembitsky, V. M., Dor, I., Shkrob, I., and Aki, M., 2001. Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev Desert. Russian Journal of Bioorganic Chemistry, 27, 110–119.

    Article  Google Scholar 

  • Derenne, S., Le Berre, F., Largeau, C., Hatcher, P. G., Connan, J., and Raynaud, J. F., 1992. Formation of ultralaminae in marine kerogens via selective preservation of thin resistant outer walls of microalgae. Organic Geochemistry, 19, 345–350.

    Article  Google Scholar 

  • Dominé, F., Bounaceur, R., Scacchi, G., Marquaire, P. M., Dessort, D., Pradier, B., and Brevart, O., 2002. Up to what temperature is petroleum stable? new insights from a 5200 free radical reaction model. Organic Geochemistry, 33, 1487–1499.

    Article  Google Scholar 

  • Durand, B., 2003. A history of organic geochemistry. Oil & Gas Science and Technology, 58, 203–231.

    Article  Google Scholar 

  • Eglinton, G., Scott, P. M., Belsky, T., Burlingame, A. L., and Calvin, M., 1964. Hydrocarbons of a biological origin from a one-billion-year-old sediment. Science, 145, 263–264.

    Article  Google Scholar 

  • Eglinton, T. I., and Repeta, D. J., 2004. Organic matter in the contemporary ocean. In Schlesinger, W. H. (ed.), Treatise on Geochemistry (Vol 6). Oxford: Elsevier-Pergamon, pp. 145–180.

    Google Scholar 

  • Elvert, M., Suess, E., and Whiticar, M. J., 1999. Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften, 31, 1175–1187.

    Google Scholar 

  • Farrimond, P., Fox, P. A., Innes, H. E., Miskin, I. P., and Head, I. M., 1998. Bacterial sources of hopanoids in recent sediments: improving our understanding of ancient hopane biomarkers. Ancient Biomolecules, 2, 147–166.

    Google Scholar 

  • Farrimond, P., Head, I. M., and Innes, H. E., 2000. Environmental influence on the biohopanoid composition of recent sediments. Geochimica et Cosmochimica Acta, 64, 2985–2992.

    Article  Google Scholar 

  • Fischer, W. W., Summons, R. E., and Pearson, A., 2005. Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology, 3, 33–40.

    Google Scholar 

  • Fowler, M. G., 1992. The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of late Ordovician age from Canada. In Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., and Trudinger, P. A. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. Berlin: Springer, pp. 336–356.

    Chapter  Google Scholar 

  • Fowler, M. G., and Douglas, A. G., 1987. Saturated hydrocarbon biomarkers in oils of late Precambrian age from Eastern Siberia. Organic Geochemistry, 11, 201–213.

    Article  Google Scholar 

  • Gelin, F., Boogers, I., Noordeloos, A. A. M., Sinninghe Damsté, J. S., Riegman, R., and De Leeuw, J. W., 1997. Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: geochemical implications. Organic Geochemistry, 26, 659–675.

    Article  Google Scholar 

  • Graham, J. E., and Bryant, D. A., 2008. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. Strain PCC 7002. The Journal of Bacteriology, 190, 7966–7974.

    Google Scholar 

  • Grantham, P. J., and Wakefield, L. L., 1988. Variations in the sterane carbon number distribution of marine source rock derived oils through geological time. Organic Geochemistry, 12, 61–73.

    Article  Google Scholar 

  • Grantham, P. J., Lijmbach, G. W. M., Postuma, J., Hughes-Clark, M. W., and Willink, R. J., 1988. Origin of crude oils in Oman. Journal of Petroleum Geology, 11, 61–80.

    Article  Google Scholar 

  • Greenwood, P. F., and Summons, R. E., 2003. GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Organic Geochemistry, 34, 1211–1222.

    Article  Google Scholar 

  • Grice, K., Schaeffer, P., Schwark, L., and Maxwell, J. R., 1996a. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kuperschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids. Organic Geochemistry, 25, 131–147.

    Article  Google Scholar 

  • Grice, K., Gibbison, R., Atkinson, J. E., Schwark, L., Eckardt, C. B., and Maxwell, J. R., 1996b. Maleimides (1H-pyrrole-2,5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns. Geochimica et Cosmochimica Acta, 60, 3913–3924.

    Article  Google Scholar 

  • Grice, K., Schaeffer, P., Schwark, L., and Maxwell, J. R., 1997. Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Organic Geochemistry, 26, 677–690.

    Article  Google Scholar 

  • Grice, K., Schouten, S., Peters, K. E., and Sinninghe Damsté, J. S., 1998a. molecular isotopic characterisation of hydrocarbon biomarkers in palaeocene-eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China. Organic Geochemistry, 29, 1745–1764.

    Article  Google Scholar 

  • Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., and Sinninghe Damsté, J. S., 1998b. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Organic Geochemistry, 28, 349–359.

    Article  Google Scholar 

  • Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y., 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307, 706–709.

    Article  Google Scholar 

  • Grosjean, E., and Logan, G. A., 2007. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: examples from Geoscience Australia marine survey S282. Organic Geochemistry, 38, 853.

    Article  Google Scholar 

  • Guyomarc’h, F., Binet, A., and Dufossé, L., 2000. Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. Journal of Industrial Microbiology and Biotechnology, V24, 64.

    Article  Google Scholar 

  • Hartgers, W. A., Sinninghe Damsté, J. S., Requejo, A. G., Allan, J., Hayes, J. M., Ling, Y., Tiang-Min, X., Primack, J., and De Leeuw, J. W., 1993. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Organic Geochemistry, 22, 703–725.

    Article  Google Scholar 

  • Harvey, G. R., Sinninghe Damsté, J. S., and De Leeuw, J. W., 1985. On the origin of alkylbenzenes in geochemical samples. Marine Chemistry, 16, 187–188.

    Article  Google Scholar 

  • Harvey, H. R., and McManus, G. B., 1991. Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochimica et Cosmochimica Acta, 55, 3387–3390.

    Article  Google Scholar 

  • Hebting, Y., Schaeffer, P., Behrens, A., Adam, P., Schmitt, G., Schneckenburger, P., Bernasconi, S. M., and Albrecht, P., 2006. Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science, 312, 1627–1631.

    Article  Google Scholar 

  • Hedberg, H. D., 1968. Significance of high-wax oils with respect to genesis of petroleum. American Association of Petroleum Geologists Bulletin, 52, 736–750.

    Google Scholar 

  • Hedges, J. I., Keil, R. G., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27, 195–212.

    Article  Google Scholar 

  • Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and Delong, E. F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–805.

    Article  Google Scholar 

  • Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta, 62, 1745–1756.

    Article  Google Scholar 

  • Hoering, T. C., 1965. The extractable organic matter in Precambrian rocks and the problem of contamination. Carnegie Institution of Washington Yearbook, 64, 215–218.

    Google Scholar 

  • Hoffmann, C. F., Foster, C. B., Powell, T. G., and Summons, R. E., 1987. Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochimica et Cosmochimica Acta, 51, 2681–2697.

    Article  Google Scholar 

  • Holba, A. G., Tegelaar, E. W., Huizinga, B. J., Moldowan, J. M., Singletary, M. S., McCaffrey, M. A., and Dzou, L. I. P., 1998a. 24-norcholestanes as age-sensitive molecular fossils. Geology, 26, 783–786.

    Article  Google Scholar 

  • Holba, A. G., Dzou, L. I. P., Masterson, W. D., Hughes, W. B., Huizinga, B. J., Singletary, M. S., Moldowan, J. M., Mello, M. R., and Tegelaar, E., 1998b. Application of 24-norcholestanes for constraining source age of petroleum. Organic Geochemistry, 29, 1269–1283.

    Article  Google Scholar 

  • Höld, I. M., Schouten, S., Jellema, J., and Sinninghe Damsté, J. S., 1999. Origin of free and bound mid-chain methyl alkanes in oil, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman). Organic Geochemistry, 30, 1411–1428.

    Article  Google Scholar 

  • Holser, W. T., Schidlowski, M., Mackenzie, F. T., and Maynard, J. B., 1988. Biogeochemical cycles of carbon and sulfur. In Gregor, C. B., Garreis, R. M., Mackenzie, F. T., and Maynard, J. B. (eds.), Chemical Cycles in the Evolution of the Earth. New York: Wiley, pp. 105–173.

    Google Scholar 

  • Huang, Z., Poulter, C. D., Wolf, F. R., Somers, T. C., and White, J. D., 1988. Braunicene, a novel cyclic C32 isoprenoid from Botryococcus braunii. Journal of American Chemical Society, 110, 3959–3964.

    Article  Google Scholar 

  • Hunt, J. M., 1979. Petroleum Geochemistry and Geology. San Francisco: Freeman.

    Google Scholar 

  • Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., and Diguida, O. A., 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Organic Geochemistry, 32, 507.

    Article  Google Scholar 

  • Jahnke, L. L., Summons, R. E., Hope, J. M., and Des Marais, D. J., 1999. Carbon isotopic fractionation in lipids from methanotrophic bacteria II: the effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers. Geochimica et Cosmochimica Acta, 63, 79–93.

    Article  Google Scholar 

  • Jenkyns, H. C., Forster, A., Schouten, S., and Sinninghe Damsté, J. S., 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432, 888–892.

    Article  Google Scholar 

  • Jiang, N., Tong, Z., Ren, D., Song, F., Yang, D., Zhu, C., and Yijun, G., 1995. The discovery of retene in Precambrian and lower Paleozoic marine formations. Chinese Journal of Geochemistry, 14, 41–51.

    Article  Google Scholar 

  • Karner, M. B., Delong, E. F., and Karl, D. M., 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510.

    Article  Google Scholar 

  • Kenig, F., Sinninghe Damsté, J. S., Kock-Van Dalen, A. C., Rijpstra, W. I. C., Huc, A. Y., and De Leeuw, J. W., 1995. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochimica et Cosmochimica Acta, 59, 2999–3015.

    Article  Google Scholar 

  • Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damste, J. S., 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta, 72, 1154.

    Article  Google Scholar 

  • Klomp, U. C., 1986. The chemical structure of a pronounced series of iso-alkanes in South Oman Crudes. Organic Geochemistry, 10, 807–814.

    Article  Google Scholar 

  • Kohl, W., Gloe, A., and Reichenbach, H., 1983. Steroids from the myxobacterium Nannocystis exedens. Journal of General Microbiology, 129, 1629–1635.

    Google Scholar 

  • Kohnen, M. E. L., Sinninghe Damsté, J. S., Baas, M., Kock-Van Dalen, A. C., and De Leeuw, J. W., 1993. Sulphur-bound steroid and phytane carbon skeletons in geomacromolecules: implications for the mechanism of incorporation of sulphur into organic matter. Geochimica et Cosmochimica Acta, 57, 2515–2528.

    Article  Google Scholar 

  • Koopmans, M. P., Schouten, S., Kohnen, M. E. L., and Sinninghe Damsté, J. S., 1996a. Restricted utility of aryl isoprenoids for photic zone anoxia. Geochimica et Cosmochimica Acta, 60, 4873–4876.

    Article  Google Scholar 

  • Koopmans, M. P., Köster, J., Van Kaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., De Leeuw, J. W., and Sinninghe Damsté, J. S., 1996b. Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochimica et Cosmochimica Acta, 60, 4467–4496.

    Article  Google Scholar 

  • Koopmans, M. P., De Leeuw, J. W., Lewan, M. D., and Sinninghe Damsté, J. S., 1997. Impact of dia- and catagenesis on sulphur and oxygen sequestration of biomarkers as revealed by artificial maturation of an immature sedimentary rock. Organic Geochemistry, 25, 391–426.

    Article  Google Scholar 

  • Köster, J., Volkman, J. K., Rullkötter, J., Scholz-Böttcher, B. M., Rethmeier, J., and Fischer, U., 1999. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum. Organic Geochemistry, 30, 1367–1379.

    Article  Google Scholar 

  • Krügel, H., Krubasik, P., Weber, K., Saluz, H. P., and Sandmann, G., 1999. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochimica et Biophysica Acta, 1439, 57–64.

    Article  Google Scholar 

  • Kuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., and Sinninghe Damsté, J. S., 2001. Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event. Science, 293, 92–94.

    Article  Google Scholar 

  • Kuypers, M. M. M., Blokker, P., Hopmans, E. C., Kinkel, H., Pancost, R. D., Schouten, S., and Sinninghe Damsté, J. S., 2002. archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 211.

    Article  Google Scholar 

  • Kvenvolden, K. A., and Hodgson, G. W., 1969. Evidence for porphyrins in early Precambrian Swaziland system sediments. Geochimica et Cosmochimica Acta, 33, 1195–1202.

    Article  Google Scholar 

  • Larter, S. R., and Douglas, A. G., 1980. Melanoidins-kerogen precursors geochemical lipid sinks: a study using pyrolysis gas chromatography (PGC). Geochimica et Cosmochimica Acta, 44, 2087–2095.

    Article  Google Scholar 

  • Liaaen-Jensen, S., 1979. Carotenoids - a chemosystematic approach. Pure and Applied Chemistry, 51, 661–675.

    Article  Google Scholar 

  • Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457, 718–721.

    Article  Google Scholar 

  • Massé, G., Belt, S. T., Rowland, S. J., and Rohmer, M., 2004. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proceedings of the National Academy of Sciences, 101, 4413–4418.

    Article  Google Scholar 

  • Maxwell, J. R., Douglas, A. G., Eglinton, G., and McCormick, A., 1968. The botryococcenes - hydrocarbons of novel structure from the Alga Botryococcus braunii, Kützing. Phytochemistry, 7, 2157.

    Article  Google Scholar 

  • Mayer, F. L., Stalling, D. L., and Johnson, J. L., 1972. Phthalate esters as environmental contaminants. Nature, 238, 411.

    Article  Google Scholar 

  • McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S., 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58, 529–532.

    Article  Google Scholar 

  • Meinschein, W. G., Barghoorn, E. S., and Schopf, J. W., 1964. Biological remnants in a Precambrian sediment. Science, 145, 262–263.

    Article  Google Scholar 

  • Mendeleev, D. I., 1878. Revue Scientifique, 13, 409.

    Google Scholar 

  • Metzger, P., and Casadevall, E., 1987. Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Letters, 28, 3931.

    Article  Google Scholar 

  • Metzger, P., and Largeau, C., 1999. Chemicals of Botryococcus braunii. In Cohen, Z. (ed.), Chemicals from Microalgae. London: Taylor & Francis, pp. 205–260.

    Google Scholar 

  • Metzger, P., Casadevall, E., Pouet, M. J., and Pouet, Y., 1985. Structures of some Botryococcenes: branched hydrocarbons from the B-race of the green alga Botryococcus braunii. Phytochemistry, 24, 2995–3002.

    Article  Google Scholar 

  • Metzger, P., Templier, J., Largeau, C., and Casadevall, E., 1986. An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry, 25, 1869.

    Article  Google Scholar 

  • Metzger, P., Largeau, C., and Casadevall, E., 1991. Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococcus braunii. chemical structure and biosynthesis. geochemical and biotechnological importance. In Herz, W., Kirby, G. W., Steglich, W., Tamm, C. (eds.), Progress in the Chemistry of Organic Natural Products Vol. 57. Berlin: Springer, pp. 1–70.

    Google Scholar 

  • Moldowan, J. M., and Talyzina, N. M., 1998. Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science, 281, 1168–1170.

    Article  Google Scholar 

  • Moldowan, J. M., Fago, F. J., Lee, C. Y., Jacobson, S. R., Watt, D. S., Slougui, N. E., Jeganathan, A., and Young, D. C., 1990. Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science, 247, 309–312.

    Article  Google Scholar 

  • Moldowan, J. M., Dahl, J. E. P., Huizinga, B. J., Fago, F. J., Hickey, L. J., Peakman, T. M., and Taylor, D. W., 1994. The molecular fossil record of oleanane and its relation to angiosperms. Science, 265, 768–771.

    Article  Google Scholar 

  • Moldowan, J. M., Dahl, J. E. P., Jacobson, S. R., Huizinga, B. J., Fago, F. J., Shetty, R., Watt, D. S., and Peters, K. E., 1996. Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology, 24, 159–162.

    Article  Google Scholar 

  • Nichols, P. D., Volkman, J. K., Palmisano, A. C., Smith, G. A., and White, D. C., 1988. Occurrence of an isoprenoid C25 di-unsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. Journal of Phycology, 24, 90–96.

    Article  Google Scholar 

  • Nip, M., Tegelaar, E. W., Brinkhuis, H., De Leeuw, J. W., Schenck, P. A., and Holloway, P. J., 1986. Analysis of modern and fossil plant cuticles by curie-point Py-GC and curiepoint Py-GC-MS: recognition of a new highly aliphatic and resistant biopolymer. Organic Geochemistry, 10, 769–778.

    Article  Google Scholar 

  • Noble, R. A., Alexander, R., Kagi, R. I., and Knox, J., 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta, 49, 2141–2147.

    Article  Google Scholar 

  • Oren, A., 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28, 56.

    Google Scholar 

  • Oró, J., and Nooner, D. W., 1967. Aliphatic hydrocarbons in Pre-cambrian rocks. Nature, 213, 1082–1085.

    Article  Google Scholar 

  • Ourisson, G., and Albrecht, P., 1992. Hopanoids 1. Geohopanoids: the most abundant natural products on Earth? Accounts of Chemical Research, 25, 398–402.

    Article  Google Scholar 

  • Ourisson, G., Rohmer, M., and Poralla, K., 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41, 301–333.

    Article  Google Scholar 

  • Pancost, R. D., Freeman, K. H., Patzkowsky, E., Wavrek, D. A., and Collister, J. W., 1998. Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, U.S.A. Organic Geochemistry, 29, 1649–1662.

    Article  Google Scholar 

  • Pancost, R. D., Crawford, N., and Maxwell, J. R., 2002. Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea. Chemical Geology, 188, 217–227.

    Article  Google Scholar 

  • Pearson, A., Budin, M., and Brocks, J. J., 2003. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences, 100, 15352–15357.

    Article  Google Scholar 

  • Pearson, A., Flood Page, S. R., Jorgenson, T. L., Fischer, W. W., and Higgins, M. B., 2007. Novel hopanoid cyclases from the environment. Environmental Microbiology, 9, 2175–2188.

    Article  Google Scholar 

  • Pepper, A. S., and Dodd, T. A., 1995. Simple kinetic models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geology, 12, 321–340.

    Article  Google Scholar 

  • Peters, K. E., and Moldowan, J. M., 1993. The Biomarker Guide. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Peters, K. E., Walters, C. C., and Moldowan, J. M., 2004. The Biomarker Guide. Englewood Cliffs: New Jersey.

    Book  Google Scholar 

  • Philippi, G. T., 1965. On the depth, time and mechanism of petroleum generation. Geochimica et Cosmochimica Acta, 29, 1021–1049.

    Article  Google Scholar 

  • Putschew, A., Schaeffer, P., Schaeffer-Reiss, C., and Maxwell, J. R., 1998. Carbon isotope characteristic of the diaromatic carotenoid, isorenieratene (intact and sulfide bound) and a novel isomer in sediments. Organic Geochemistry, 28, 1849–1856.

    Article  Google Scholar 

  • Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C. II, Shah. M., Hettich, R. L., and Banfield, J. F., 2005. Community proteomics of a natural microbial biofilm. Science, 308, 1915–1920.

    Article  Google Scholar 

  • Rashby, S. E., Sessions, A. L., Summons, R. E., and Newman, D. K., 2007. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences, 104, 15099–15104.

    Article  Google Scholar 

  • Requejo, A. G., Creaney, S., Allan, J., Gray, N. R., and Cole, K. S., 1992. Aryl isoprenoids and diaromatic carotenoids in paleozoic source rocks and oils from the Western Canada and Williston Basins. Organic Geochemistry, 19, 245–264.

    Article  Google Scholar 

  • Robinson, N., Eglinton, G., and Brassell, S. C., 1984. Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature, 308, 439–442.

    Article  Google Scholar 

  • Rohmer, M., Bouvier-Navé, P., and Ourisson, G., 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology, 130, 1137–1150.

    Google Scholar 

  • Rowland, S. J., Yon, D. A., Lewis, C. A., and Maxwell, J. R., 1985. Occurrence of 2,6,10-trimethyl-7-(3-methylbutyl)-dodecane and related hydrocarbons in the green alga Enteromorpha prolifera and sediments. Organic Geochemistry, 8, 207.

    Article  Google Scholar 

  • Schaeffer, P., Reiss, C., and Albrecht, P., 1995. Geochemical study of macromolecular organic matter from sulfur-rich sediments of evaporitic origin (Messinian of Sicily) by chemical degradations. Organic Geochemistry, 23, 567–581.

    Article  Google Scholar 

  • Schaeffer, P., Adam, P., Wehrung, P., and Albrecht, P., 1997. Novel aromatic carotenoid derivatives from sulfur photosynthetic bacteria in sediments. Tetrahedron Letters, 38, 8413–8416.

    Article  Google Scholar 

  • Schouten, S., Van Der Maarel, M. J., Huber, R., and Sinninghe Damsté, J. S., 1997. 2,6,10,15,19-pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei. Organic Geochemistry, 26, 409–414.

    Article  Google Scholar 

  • Schouten, S., Hopmans, E. C., Schefuss, E., and Sinninghe Damsté, J. S., 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204, 265–274.

    Article  Google Scholar 

  • Schouten, S., Hopmans, E. C., Forster, A., Van Breugel, Y., Kuenen, J. G., and Sinninghe Damsté, J. S., 2003. Extremely high sea-surface temperatures at low latitudes during the Middle Cretaceous as revealed by archaeal membrane lipids. Geology, 31, 1069–1072.

    Article  Google Scholar 

  • Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S., 2007. Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Organic Geochemistry, 38, 1537.

    Article  Google Scholar 

  • Shiea, J., Brassell, S. C., and Ward, D. M., 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments? Organic Geochemistry, 15, 223–231.

    Article  Google Scholar 

  • Simons, D. J. H., and Kenig, F., 2001. Molecular fossil constraints on the water column structure of the Cenomanian-Turonian Western Interior Seaway, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 129–152.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., and De Leeuw, J. W., 1990. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Organic Geochemistry, 16, 1077–1101.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., and De Leeuw, J. W., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59, 1895–1900.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Schouten, S., and Van Duin, A. C. T., 2001. Isorenieratene derivatives in sediments: possible controls on their distribution. Geochimica et Cosmochimica Acta, 65, 1557–1571.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Prahl, F. G., Wakeham, S. G., and Schouten, S., 2002. Distribution of membrane lipids of planktonic crenarchaeota in the Arabian Sea. Applied and Environmental Microbiology, 68, 2997–3002.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Rijpstra, W. I. C., Schouten, S., Fuerst, J. A., Jetten, M. S. M., and Strous, M., 2004a. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Organic Geochemistry, 35, 561–566.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., Rampen, S. W., Massé, G., Allard, W. G., Belt, S. T., Robert, J. M., Rowland, S. J., Moldowan, J. M., Barbanti, S. M., Fago, F. J., Denisevich, P., Dahl, J., Trindade, L. A. F., and Schouten, S., 2004b. The rise of the rhizosolenid diatoms. Science, 304, 584–587.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Baas, M., Geenevasen, J. A. J., and Kenig, F., 2005. Structural identification of sedimentary C21 and C22 highly branched isoprenoid alkanes. Organic Geochemistry, 36, 511–517.

    Article  Google Scholar 

  • Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G. J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and The Expedition Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441, 610.

    Article  Google Scholar 

  • Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G. J., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R., 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 450, 1218.

    Article  Google Scholar 

  • Summons, R. E., and Capon, R. J., 1988. Fossil steranes with unprecedented methylation in ring-A. Geochimica et Cosmochimica Acta, 52, 2733–2736.

    Article  Google Scholar 

  • Summons, R. E., and Jahnke, L. L., 1992. Hopenes and hopanes methylated in ring-A: correlation of the hopanoids from extant methylotrophic bacteria with their fossil analogues. In Moldowan, J. M., Albrecht, P., and Philip, R. P. (eds.), Biological Markers in Sediments and Petroleum. Englewood Cliffs, NJ: Prentice Hall, pp. 182–200.

    Google Scholar 

  • Summons, R. E., and Powell, T. G., 1986. Chlorobiaceae in paleozoic seas revealed by biological markers, isotopes and geology. Nature, 319, 763–765.

    Article  Google Scholar 

  • Summons, R. E., and Powell, T. G., 1987. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochimica et Cosmochimica Acta, 51, 557–566.

    Article  Google Scholar 

  • Summons, R. E., and Powell, T. G., 1992. hydrocarbon composition of the late Proterozoic oils of the Siberian Platform: implications for the depositional environment of source rocks. In Schidlowski, M., Golubic, S., Kimberley, M. M., and Trudinger, P. A. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. Berlin: Springer, pp. 296–307.

    Chapter  Google Scholar 

  • Summons, R. E., and Walter, M. R., 1990. Molecular fossils and microfossils of prokaryotes and protists from proterozoic sediments. American Journal of Science, 290-A, 212–244.

    Google Scholar 

  • Summons, R. E., Powell, T. G., and Boreham, C. J., 1988. Petroleum geology and geochemistry of the middle Proterozoic McArthur Basin, northern Australia: III. Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 52, 1747–1763.

    Article  Google Scholar 

  • Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A., 1999. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.

    Article  Google Scholar 

  • Summons, R. E., Metzger, P., Largeau, C., Murray, A. P., and Hope, J. M., 2002. Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and oils. Organic Geochemistry, 33, 99–109.

    Article  Google Scholar 

  • Summons, R. E., Bradley, A. S., Jahnke, L. L., and Waldbauer, J. R., 2006. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 951.

    Article  Google Scholar 

  • Summons, R. E., Thomas, J., Maxwell, J. R., and Boreham, C. J., 1992. Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochim. Cosmochim. Acta, 56, 2437–2444.

    Article  Google Scholar 

  • Summons, R. E., Volkman, J. K., and Boreham, C. J., 1987. Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum. Geochim. Cosmochim. Acta, 51, 3075–3082.

    Article  Google Scholar 

  • Talyzina, N. M., Moldowan, J. M., Johannisson, A., and Fago, F. J., 2000. Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Review of Palaeobotany and Palynology, 108, 37–53.

    Article  Google Scholar 

  • Tegelaar, E. W., De Leeuw, J. W., Derenne, S., and Largeau, C., 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta, 53, 3103–3106.

    Article  Google Scholar 

  • Tegelaar, E. W., Hollman, G., Van Der Vegt, P., De Leeuw, J. W., and Holloway, P. J., 1995. Chemical characterization of the periderm tissue of some angiosperm species: recognition of an insoluble, non-hydrolyzable, aliphatic biomacromolecule (Suberan). Organic Geochemistry, 23, 239–251.

    Article  Google Scholar 

  • Ten Haven, H. L., Rohmer, M., Rullkötter, J., and Bisseret, P., 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta, 53, 3073–3079.

    Article  Google Scholar 

  • Thiel, V., Peckmann, J., Seifert, R., Wehrung, P., Reitner, J., and Michaelis, W., 1999. Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochimica et Cosmochimica Acta, 63, 3959–3966.

    Article  Google Scholar 

  • Tissot, B. P., and Welte, D. H., 1984. Petroleum Formation and Occurrence. Berlin: Springer.

    Google Scholar 

  • Treibs, A., 1936. Chlorophyll and hemin derivatives in organic mineral substances. Angewandte Chemie, 49, 682–686.

    Article  Google Scholar 

  • Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., and Banfield, J. F., 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428, 37–43.

    Article  Google Scholar 

  • Tyson, R. V., 1995. Sedimentary Organic Matter. Organic Facies and Palynofacies, New York: Chapman and Hall, pp. 309–315.

    Book  Google Scholar 

  • Van Aarssen, B. G. K., Cox, H. C., Hoogendoorn, P., and De Leeuw, J. W., 1990. A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia. Geochimica et Cosmochimica Acta, 54, 3021–3031.

    Article  Google Scholar 

  • Van Aarssen, B. G. K., Hessels, J. K. C., Abbink, O. A., and De Leeuw, J. W., 1992. The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta, 56, 1231–1246.

    Article  Google Scholar 

  • Vernadsky, V. I., 1934. Outlines of geochemistry ONTI. Gornogeolog. Neft. Izd.

    Google Scholar 

  • Versteegh, G. J. M., Blokker, P., Wood, G. D., Collinson, M. E., Sinninghe Damsté, J. S., and De Leeuw, J. W., 2004. An example of oxidative polymerization of unsaturated fatty acids as a preservation pathway for dinoflagellate organic matter. Organic Geochemistry, 35, 1129–1139.

    Article  Google Scholar 

  • Villar, H. J., Püttmann, W., and Wolf, M., 1988. Organic geochemistry and petrography of tertiary coals and carbonaceous shales from Argentina. Organic Geochemistry, 13, 1011–1021.

    Article  Google Scholar 

  • Vink, A., Schouten, S., Sephton, S., and Sinninghe Damsté, J. S., 1998. A newly discovered norisoprenoid, 2,6,15,19-tetramethylicosane, in Cretaceous black shales. Geochimica et Cosmochimica Acta, 62, 965–970.

    Article  Google Scholar 

  • Volkman, J. K., 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9, 83–99.

    Article  Google Scholar 

  • Volkman, J. K., 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology, 60, 496–506.

    Google Scholar 

  • Volkman, J. K., Barrett, S. M., Dunstan, G. A., and Jeffrey, S. W., 1993. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Organic Geochemistry, 20, 7–15.

    Article  Google Scholar 

  • Volkman, J. K., Barrett, S. M., and Dunstan, G. A., 1994. C25 and C30 highly branched isoprenoid alkanes in laboratory cultures of two marine diatoms. Organic Geochemistry, 21, 407–413.

    Article  Google Scholar 

  • Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., and Gelin, F., 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry, 29, 1163–1179.

    Article  Google Scholar 

  • Wakeham, S. G., Sinninghe Damsté, J. S., Kohnen, M. E. L., and De Leeuw, J. W., 1995. Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochimica et Cosmochimica Acta, 59, 521–533.

    Article  Google Scholar 

  • Wang, T. G., and Simoneit, B. R. T., 1990. Organic geochemistry and coal petrology of tertiary brown coal in the Zhoujing Mine, Baise Basin, South China. 2. biomarker assemblage and significance. Fuel, 69, 12–20.

    Article  Google Scholar 

  • Ward, A. C., and Bora, N., 2006. Diversity and biogeography of marine actinobacteria. Current Opinion in Microbiology, 9, 279–286.

    Article  Google Scholar 

  • Wen, Z., Ruiyong, W., Radke, M., Qingyu, W., Guoying, S., and Zhili, L., 2000. Retene in pyrolysates of algal and bacterial organic matter. Organic Geochemistry, 31, 757–762.

    Article  Google Scholar 

  • Zumberge, J. E., 1987. Terpenoid biomarker distributions in low maturity crude oils. Organic Geochemistry, 11, 479.

    Article  Google Scholar 

  • Zundel, M., and Rohmer, M., 1985a. Prokaryotic triterpenoids 1. 3-methylhopanoids from Acetobacter sp. and Methylococcus capsulatus. European Journal of Biochemistry, 150, 23–27.

    Article  Google Scholar 

  • Zundel, M., and Rohmer, M., 1985b. Prokaryotic triterpenoids 3. the biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus spp. pasteurianus. European Journal of Biochemistry, 150, 35–39.

    Article  Google Scholar 

  • Zundel, M., and Rohmer, M., 1985c. Hopanoids of the methylotrophic bacteria Methylococcus capsulatus and Methylomonas sp. as possible precursors for the C29 and C30 hopanoid chemical fossils. FEMS Microbiology Letters, 28, 61–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Brocks, J.J., Grice, K. (2011). Biomarkers (Molecular Fossils). In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_30

Download citation

Publish with us

Policies and ethics