**Find out how to access preview-only content**

**Reference Work Entry**

Encyclopedia of Planetary Science

Part of the series Encyclopedia of Earth Science pp 289-292

# Gravity fields of the terrestrial planets

- Kurt Lambeck

One of the important forces operating in the solar system is gravity, the force of mutual attraction between masses such as planets and satellites or the mutual attraction between small mass elements of a planet. Newton's law of gravitation, ‘two particles attract each other with a central force in proportion to the product of their masses and inversely in proportion to the square of the distance between them,’ has been found to be largely adequate to explain most gravitation phenomena in the solar system, whether it is orbital motions or the mass distributions within planets. The proportionality constant of Newton's law where ∇ is the gradient operator. For a body of volume

*G*, is 6.670 × 10^{−11}N m^{2}kg^{−2}. An equivalent expression of Newton's law is in terms of the gravitational potential Φ, as the acceleration of gravity*, imparted by gravity on a test particle according to***a**(G19)

*V*the potential at a point P outside of*V*is ...This is an excerpt from the content

- Title
- Gravity fields of the terrestrial planets
- Reference Work Title
- Encyclopedia of Planetary Science
- Reference Work Part
- 7
- Pages
- pp 289-292
- Copyright
- 1997
- DOI
- 10.1007/1-4020-4520-4_162
- Print ISBN
- 978-0-412-06951-2
- Online ISBN
- 978-1-4020-4520-2
- Series Title
- Encyclopedia of Earth Science
- Series ISSN
- 1388-4360
- Publisher
- Springer Netherlands
- Copyright Holder
- Chapman & Hall
- Additional Links

- Topics
- Industry Sectors

- Authors

### Continue reading...

To view the rest of this content please follow the download PDF link above.