Skip to main content

Diseases of Begonia

  • Living reference work entry
  • First Online:
Handbook of Florists' Crops Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

  • 267 Accesses

Abstract

Begonias are susceptible to a wide variety of fungi, bacteria, and viruses, as well as nematodes and abiotic diseases. The systemic nature of some of the pathogens makes it likely that the diseases they cause can be found wherever vegetatively propagated begonias are shipped. Management of these pathogens is paramount for specialty propagators while growers purchasing plants must inspect incoming plants for symptoms and understand the biology of the pathogens involved in order to manage them effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams MJ, Antoniw JF (2006) DPVweb: a comprehensive database of plant and fungal virus genes and genomes. Nucleic Acids Res 34(Database issue):D382–D385

    Article  CAS  PubMed  Google Scholar 

  • Agrawal H, Boss L, Chessin H (1962) Distribution of clover yellow mosaic and white clover mosaic viruses on shite clover in the United States. Phytopathology 52:517–519

    Google Scholar 

  • Atmatjidou VP, Fynn RP, Hoitink HAJ (1991) Dissemination and transmission of Xanthomonas campestris pv. begoniae in an ebb and flow irrigation system. Plant Dis 75(12):1261–1265

    Article  Google Scholar 

  • Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) (2002) The powdery mildews: a comprehensive treatise. APS Press, St. Paul

    Google Scholar 

  • Bond WP, Whitman HK, Black LL (1983) Indigenous weeds as reservoirs of tomato spotted wilt virus in Louisiana. Phytopathology 73:499

    Google Scholar 

  • Brand T, Wienberg J (2005) Anfälligkeit verschiedener Begonien gegenuber Fusarium foetens. Gesunde Pflanz 57:27–29 (In Dutch)

    Article  Google Scholar 

  • Broadbent L (1965) The epidemiology of tomato mosaic: XI. Seed-transmission of TMV. Ann Appl Biol 56:177–205

    Article  CAS  Google Scholar 

  • Broadbent L, Fletcher JT (1963) The epidemiology of tomato mosaic: IV. Persistence of virus on clothing and glasshouse structures. Ann Appl Biol 52:233–241

    Article  Google Scholar 

  • Brødsgaard HF (1994) Insecticide resistance in European and African strains of western flower thrips (Thysanoptera: Thripidae) tested in a new residue-on-glass test. J Econ Entomol 87:1141–1146

    Article  Google Scholar 

  • Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M, Saddler GS, Scortichini M, Stead DE, Takikawa Y (2010) Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J Plant Pathol 92:551–592

    Google Scholar 

  • Cho JJ, Mau RFL, Gonsalves D, Mitchell WC (1986) Reservoir weed hosts of tomato spotted wilt virus. Plant Dis 70(11):1014–1017

    Article  Google Scholar 

  • Daughtrey ML, Wick RL, Peterson JL (1995) Compendium of flowering potted plant diseases. APS Press, St. Paul

    Google Scholar 

  • Dunleavy JM (1957) The grasshopper as a vector of tobacco ringspot virus in soybean. Phytopathology 47:681–682

    Google Scholar 

  • Edwardson JR, Christie RG (1991) Cucumoviruses. In: CRC handbook of viruses infecting legumes. CRC Press, Boca Raton, pp 293–319

    Google Scholar 

  • Elad Y, Yunis H, Katan T (1992) Multiple resistance to benzimidazoles, dicarboximides, and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol 41:41–46

    Article  CAS  Google Scholar 

  • Elmer WH (2008) Preventing spread of Fusarium wilt of Hiemalis begonias in the greenhouse. Crop Prot 27:1078–1083

    Article  CAS  Google Scholar 

  • Elmer WH, Vossbrinck C (2004) First report of a wilt disease of Hiemalis begonias caused by Fusarium foetens in the United States. Plant Dis 88(11):1287

    Article  Google Scholar 

  • Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. APS Press, St. Paul

    Google Scholar 

  • Fraenkel-Conrat H (1988) Tobacco necrosis, satellite tobacco necrosis, and related viruses. In: The plant viruses. New York, Springer US, pp 147–161

    Google Scholar 

  • Fromme FD, Wingard SA, Priode CN (1927) Ringspot of tobacco: an infectious disease of unknown cause. Phytopathology 17:321–328

    Google Scholar 

  • Guba EF, Gilgut CJ (1938) Control of begonia leaf-blight nematode. Mass Agric Exp Stat Bull 348:1–12

    Google Scholar 

  • Gullino ML, Garibaldi A (1987) Control of Botrytis cinerea resistant to benzimidazoles and dicarboximides with mixtures of different fungicides. Meded Fac Landbouwwet Rijksuniv Gent 52:895–900

    CAS  Google Scholar 

  • Hampton RO (1963) Seed transmission of white clover mosaic and clover yellow mosaic viruses in red clover. Phytopathology 53:1139

    Google Scholar 

  • Harri JA, Larsen PO, Powell CC (1977) Bacterial leaf spot and blight of Rieger elatior begonia: systemic movement of the pathogen, host range, and chemical control trials. Plant Dis Rep 61:649–653

    CAS  Google Scholar 

  • Harris KF, Bradley RHE (1973) Importance of leaf hairs in the transmission of tobacco mosaic virus by aphids. Virology 52:295–300

    Article  CAS  PubMed  Google Scholar 

  • Hausbeck MK, Moorman GW (1996) Managing Botrytis in greenhouse-grown flower crops. Plant Dis 80:1212–1219

    Article  Google Scholar 

  • Hausbeck MK, Pennypacker SP (1991) Influence of grower activity and disease incidence on concentrations of airborne conidia of Botrytis cinerea among geranium stock plants. Plant Dis 75:798–803

    Article  Google Scholar 

  • Hoggan IA (1933) Some factors involved in aphid transmission of the cucumber-mosaic virus to tobacco. J Agric Res 47:689–704

    Google Scholar 

  • Ivors KL, Moorman GW (2014) Oomycete plant pathogens in irrigation water. In: Hong CX, Moorman GW, Wohanka W, Büttner C (eds) Biology, detection, and management of plant pathogens in irrigation water. APS Press, St. Paul, pp 57–64

    Google Scholar 

  • Jacquemond M (2012) Cucumber mosaic virus. Adv Virus Res 84:439–504

    Article  PubMed  Google Scholar 

  • Jarvis WR (1980) Epidemiology. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 219–250

    Google Scholar 

  • Jodon MH, Nichols LP (1974) Bacterial leaf spot of begonia. Pa Flower Grow Bull 272:8–9

    Google Scholar 

  • Johnson F (1942) The complex nature of white clover mosaic. Phytopathology 32:103–111

    Google Scholar 

  • Kassanis B, MacFarlane I (1964) Transmission of tobacco necrosis virus by zoospores of Olpidium brassicae. J Gen Microbiol 36:79–98

    Article  CAS  PubMed  Google Scholar 

  • Kobatake H, Osaki T, Inouye T (1984) Reservoirs of tomato spotted wilt virus in Nara Prefecture. Ann Phytopathol Soc Jpn 50:541–544

    Article  Google Scholar 

  • Komuro Y, Iwaki M (1968) Bean yellow mosaic virus and tobacco ringspot virus isolated from Crotalaria (Crotalaria spectabilis). Ann Phytopathol Soc Jpn 34:7–15

    Article  Google Scholar 

  • Law MD, Moyer JW (1990) A tomato spotted wilt-like virus with a serologically distinct N protein. J Gen Virol 71:933–938

    Article  CAS  Google Scholar 

  • Lisa V, Boccardo G (1996) Fabaviruses: broad bean wilt and allied viruses. In: Harrison BD, Murant AF (eds) Polyhedral virions and bipartite RNA genomes, vol 5, The plant viruses. Plenum Press, New York, pp 229–250

    Google Scholar 

  • Lisa V, Boccardo G, D’Agostino G, Dellavalle G, D’Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71:667–672

    Article  CAS  Google Scholar 

  • Lojek JS, Orlob GB (1969) Aphid transmission of tobacco mosaic virus. Science 164:1407–1408

    Article  CAS  PubMed  Google Scholar 

  • McGuire JM (1964) Efficiency of Xiphinema americanum as a vector of tobacco ringspot virus. Phytopathology 54:799–801

    Google Scholar 

  • Messieha M (1969) Transmission of tobacco ringspot virus by thrips. Phytopathology 59:943–945

    CAS  PubMed  Google Scholar 

  • Middleton JT (1942) Stem rot of tuberous begonia. Bull Torrey Bot Club 69:92–99

    Article  Google Scholar 

  • Moorman GW, Lease RJ (1992) Benzimidazole- and dicarboximide-resistant Botrytis cinerea from Pennsylvania greenhouses. Plant Dis 76:477–480

    Article  CAS  Google Scholar 

  • Neergaard P (1977) Seed-borne viruses, Chapter 3. In: Seed pathology, vol I. MacMillan Press, London/Madras, 839 pp

    Chapter  Google Scholar 

  • Nelson PV, Krauskopf DN, Mingis NC (1977) Visual symptoms of nutrient deficiencies in Rieger elatior begonia. J Am Soc Hortic Sci 102:65–68

    Google Scholar 

  • Palukaitis P, García-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323

    Article  CAS  PubMed  Google Scholar 

  • Peirson DQ (1974) Epidemiology of a foliar disease of Rieger elatior begonias caused by Aphelenchoides fragariae (Ritzema Bos). MS, Ohio State University

    Google Scholar 

  • Powell CC (1985) Begonia. In: Strider DL (ed) Diseases of floral crops, vol 1. Praeger Scientific, New York, pp 423–445

    Google Scholar 

  • Pratt MJ (1961) Studies on clover yellow mosaic and while clover mosaic viruses. Can J Bot 39:655–665

    Article  Google Scholar 

  • Price WC (1940) Comparative host ranges of six plant viruses. Am J Bot 27:530–541

    Article  Google Scholar 

  • Quinn JA, Powell CC (1981) Identification and host range of powdery mildew of begonia. Plant Dis 65:68–70

    Article  Google Scholar 

  • Quinn JA, Powell CC (1982) Effects of temperature, light, and relative humidity on powdery mildew of begonia. Phytopathology 72:480–484

    Article  Google Scholar 

  • Ribeiro LFC, Mello APD, Bedendo IP, Gioria R (2006) Phytoplasma associated with shoot proliferation in Begonia. Sci Agric 63(5):475–477

    Article  CAS  Google Scholar 

  • Riedel RM (1985) Nematode problems. Diseases of floral crops. In: Strider DL (ed) Diseases of floral crops, vol 1. Praeger Scientific, New York, pp 295–312

    Google Scholar 

  • Sammons B, Rissler JF, Shanks JB (1982) Development of gray mold of poinsettia and powdery mildew of begonia and rose under split night temperatures. Plant Dis 66:776–777

    Article  Google Scholar 

  • Samuel G, Bald JG, Pittman HH (1930) Investigations on ‘spotted wilt’ of tomatoes. Aust Counc Sci Ind Res Bull 44:8–11

    Google Scholar 

  • Schroers HJ, Baayen RP, Meffert JP, de Gruyter J, Hooftman M, O’Donnell K (2004) Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia × hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 96(2):393–406

    Article  PubMed  Google Scholar 

  • Schuster MF (1963) Flea beetle transmission of tobacco ringspot virus in the Lower Rio Grande Valley. Plant Dis Rep 47:510–511

    Google Scholar 

  • Sekine T, Kanno H, Aoki T (2008) Occurrence of a leaf and stem rot caused by Fusarium foetens in begoia elatior hybrids (Begonia × hiemalis). Jpn J Phytopathol 74:164–166

    Article  Google Scholar 

  • Shew HD, Lucas GB (1991) Compendium of tobacco diseases. APS Press, St. Paul

    Google Scholar 

  • Simons JN (1955) Some plant-vector-virus relationships of southern cucumber mosaic virus. Phytopathology 45:217–219

    Google Scholar 

  • Simons JN, Zitter TA (1980) Use of oils to control aphid-borne viruses. Plant Dis 64:542–546

    Article  Google Scholar 

  • Smith KM, Bald JG (1935) A description of a necrotic virus disease affecting tobacco and other plants. Parasitology 27:231–245

    Article  Google Scholar 

  • Smith KM, Markham R (1944) Two new viruses affecting tobacco and other plants. Phytopathology 34:324–329

    Google Scholar 

  • Stubbs IL (1947) A destructive vascular wilt virus disease of broad bean (Vicia faba L) in Victoria. J Dept Agric Vic 46:323–332

    Google Scholar 

  • Teakle DS (1962) Transmission of tobacco necrosis virus by a fungus, Olpidium brassicae. Virology 18:224–231

    Article  CAS  PubMed  Google Scholar 

  • Teakle DS, Gold AH (1963) Further studies of Olpidium as a vector of tobacco necrosis virus. Virology 19:310–315

    Article  CAS  PubMed  Google Scholar 

  • Thomas C (1969) Transmission of tobacco ringospot virus by Tetranycus sp. Phytopathology 59:633–636

    Google Scholar 

  • Thompson ML, Thompson EJ (1981) Begonias: the complete reference guide. Times Books, New York

    Google Scholar 

  • Tian X, Zheng Y (2012) Species susceptibility and biological control of Fusarium wilt of Hiemalis begonias in Canada. Can J Plant Pathol 34:345–346

    Article  Google Scholar 

  • Tian X, Zheng Y (2013) Evaluation of biological control agents for Fusarium wilt in Hiemalis begonia. Can J Plant Pathol 35:363–370

    Article  Google Scholar 

  • Tian XL, Dixon M, Zheng YB (2012) Susceptibility of various potted begonias to Fusarium foetens. Can J Plant Pathol 34:248–254

    Article  Google Scholar 

  • Tompkins CM (1950) Botrytis stem rot of tuberous-rooted begonia. Hilgardia 19:401–410

    Article  CAS  Google Scholar 

  • Tschope B, Hey M, Wohanka W, Hennig F (2007) Characterisation and identification of Fusarium foetens, causative agent of wilting and stem rot of begonia elatior hybrids (Begonia × hiemalis) by its volatile compounds. Eur J Hortic Sci 72(4):152–157

    Google Scholar 

  • Ullman DE, German TL, Sherwood JL, Westcot DM, Cantone FA (1993) Tospovirus replication in insect vector cells: immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456–463

    Article  CAS  Google Scholar 

  • Van der Gaag D, Raak M (2010) Pest risk assessment Fusarium foetens. Plant Protection Service, Ministry of Agriculture, Nature and Food Quality, Wageningen. Bulletin 11-16495

    Google Scholar 

  • Watson MA, Roberts FM (1939) A comparative study of the transmission of Hyoscyamus virus 3, potato virus Y and cucumber virus 1 by the vector Myzus persicae (Sulz.), M. circumflexus (Buckton) and Macrosiphum gei (Koch). Proc R Soc Ser B 127:543–576

    Article  Google Scholar 

  • Wijkamp I, van Lent J, Kormelink R, Goldbach R, Peters D (1993) Multiplication of tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J Gen Virol 74:341–349

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Richardson PA, Olson HA, Hong CX (2013) Root and stem rot of begonia caused by Phytopythium helicoides in Virginia. Plant Dis 97(10):1385

    Article  Google Scholar 

  • Zhao G, Liu W, Brown JM, Knowles CO (1995) Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 88:1164–1170

    Article  CAS  Google Scholar 

  • Zitter TA, Murphy JF (2009) Cucumber mosaic. Plant Health Instructor. doi:10.1094/PHI-I-2009-0518-01

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Rosa or Gary W. Moorman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Rosa, C., Moorman, G.W. (2016). Diseases of Begonia. In: McGovern, R., Elmer, W. (eds) Handbook of Florists' Crops Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-319-32374-9_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32374-9_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32374-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics