Skip to main content
Book cover

DNA Viruses pp 161–172Cite as

FTIR Microscopy Detection of Cells Infected With Viruses

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 292))

Summary

Fourier-transform infrared (FTIR) microscopy is considered a comprehensive and sensitive method for detection of molecular changes in cells. The advantage of FTIR microspectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of a cell culture or a tissue. We have shown that it is possible to apply FTIR microscopy as a sensitive and effective assay for the detection of cells infected with various members of the herpes family of viruses and retroviruses. Detectable and significant spectral differences between normal and infected cells were evident at early stages of the infection. Impressive changes in several spectroscopic parameters were seen in infected compared with uninfected cells. It seems that the change in spectral behavior is specific to the infecting virus, because cells infected with herpesviruses showed different spectral changes compared with cells infected with retoviruses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dworkin, L. L., Gibler, T. M., and Van Galder, R. N. (2002) Real-time quantitive polymerase chain reaction diagnosis of infectious posterious uveitis. Arch. Ophthalmol. 120, 1534–1539.

    PubMed  CAS  Google Scholar 

  2. Coiras, M. T., Perez-Brena, P., Garcia, M. L., and Casas I. (2003) Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay. J. Med. Virol. 69, 132–141.

    Article  PubMed  CAS  Google Scholar 

  3. Mantsch, H. H. and Chapman, D. (1996) Infrared Spectroscopy of Biomolecules. John Wiley, New York.

    Google Scholar 

  4. Jackson, M., Tetteh, J., Manfield, B., et al. (1998) Cancer diagnosis by infrared spectroscopy: methodology aspects. SPIE 3257, 24–34.

    Article  CAS  Google Scholar 

  5. Diem, M., S., Boydston, W., and Chiriboga, L. (1999) Infrared spectroscopy of cells and tissues: shining light onto a novel subject. Appl. Spectrosc. 53, 148–161.

    Article  Google Scholar 

  6. Franck, P., Nabet, P., and Dousset, B. (1998) Applications of infrared spectroscopy to medical biology. Cell. Mol. Biol. 44, 273–275.

    PubMed  CAS  Google Scholar 

  7. Huleihel, M., Talyshinsky, M., and Erukhimovitch, V. (2001) FTIR microscopy as a method for detection of retrovirally transformed cells. Spectroscopy 15, 57–64.

    CAS  Google Scholar 

  8. Wong, P., Goldstein, S., Grekin, R., Godwin, A., Pivik, C., and Rigas, B. (1993) Distinct infrared spectroscopic pattern of human basal cell carcinoma of the skin. Cancer Res. 53, 762–765.

    PubMed  CAS  Google Scholar 

  9. Afanasyeva, N. I., Kolyakov, F. S., Artjushenko, S. G., Sokolov, V. V., and Frank, G. A. (1998) Minimally invasive and ex vivo diagnostics of breast cancer tissues by fiber optic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy. SPIE 3250, 140–146.

    Article  CAS  Google Scholar 

  10. Lasch, P. and Naumann, D. (1998) FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques. Cell. Mol. Biol. 44, 189–202.

    PubMed  CAS  Google Scholar 

  11. Mordechai, S., Argov, S., Salman, A., et al. (2000) FTIR microscopic comparative study on normal, premalignant and malignant tissues of human intestine. SPIE 4129, 231–242.

    Article  CAS  Google Scholar 

  12. Yazdi, H. M., Bertrand, M. A., and Wong, P. T. (1996) Detecting structural changes at the molecular level with Fourier transform infrared spectroscopy. Acta Cytol. 40, 664–668.

    PubMed  CAS  Google Scholar 

  13. Benedetti, E., Bramanti, E., and Rossi, I. (1997) Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of FT-IR microspectroscopy. Appl. Spectrosc. 51, 792–797.

    Article  CAS  Google Scholar 

  14. Chiriboga, L., Xie, P., Zarou, D., Zakim, D., and Diem, M. (1998) Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy. Cell. Mol. Biol. 44, 219–229.

    PubMed  CAS  Google Scholar 

  15. Yang, D., Castro, D., El-Sayed, El-Sayed, M., Saxton, R., and Nancy, Y. (1995) A Fourier-transform infrared spectroscopic comparison of cultured human fibroblast and fibrosarcoma cells. SPIE 2389, 543–550.

    Article  Google Scholar 

  16. Wang, H. P., Wang, H. C., and Huang, Y. J. (1997) Microscopic FTIR studies of lung cancer cells in pleural fluid. Sci. Total. Environ. 204, 283–287.

    Article  PubMed  Google Scholar 

  17. Gao, T., Feng, J., and Ci, Y. (1999) Human breast carcinomal tissues display distinctive FTIR spectra: implication for the histological characterization of carcinomas. Anal. Cell. Pathol. 18, 87–93.

    PubMed  CAS  Google Scholar 

  18. Lowry, S. R. (1998) The analysis of exfoliated cervical cells by infrared microscopy. Cell. Mol. Biol. 44, 169–177.

    PubMed  CAS  Google Scholar 

  19. Malins, D. C., Polissar, N. L., and Gunselman, S. J. (1997) Models of DNA structure achieve almost perfect discrimination between normal prostate, benign prostatic hyperplasia (BPH) and adenocarcinoma, and have a high potential for predicting BPH and prostate cancer. Proc. Natl. Acad. Sci. USA 94, 259–264.

    Article  PubMed  CAS  Google Scholar 

  20. Salman, A., Argov, S., Jagannathan, R., et al. (2001) FTIR microscopic characterization of normal and malignant human colonic tissues. Cell. Mol. Biol. 47, 159–166.

    Google Scholar 

  21. Jagannathan, R., Salman, A., Hammody, Z., et al. (2001) FTIR microscopic studies on normal and H-Ras oncogene transfected cultured mouse fibroblasts. Eur. Biophys. J. 30, 250–255.

    Article  Google Scholar 

  22. Erukhimovitch, V., Talyshinsky, M., Souprun, Y., and Huleihel, M. (2002) Spectroscopic characterization of human and mouse primary cells, cell lines and malignant cells. Photochem. Photobiol. 76, 446–451.

    Article  PubMed  CAS  Google Scholar 

  23. Huleihel, M., Erukhimovitch, V., Talyshinsky, M., and Karpasas, M. (2002) Spectroscopic characterization of normal primary and malignant cells transformed by retroviruses. Appl. Spectrosc. 56, 640–645.

    Article  CAS  Google Scholar 

  24. Naumann, D., Helm, D., and Labischinski, H. (1991) Microbiological characteri-zations by FT-IR spectroscopy. Nature 351, 81–82.

    Article  PubMed  CAS  Google Scholar 

  25. Petrich, W. and Werner, G. (1999) Recognition of disease pattern in IR of blood serum. Physikalische Blaetter 55,49–51.

    CAS  Google Scholar 

  26. Shaw, R. A., Kotowich, S., Leroux, M., and Mantsch, H. H. (1998) Multianalyte serum analysis using mid-infrared spectroscopy. Ann. Clin. Biochem. 35, 624–627.

    PubMed  CAS  Google Scholar 

  27. Shaw, R. A., Kotowich, S., Mantsch, H. H., and Leroux, M. (1996) Quantitation of protein, creatinine and urea in urine by near-infrared spectroscopy. Clin. Biochem. 29, 11–19.

    Article  PubMed  CAS  Google Scholar 

  28. Salman, A., Erukhimovitch, V., Talyshinsky, M., Huleihel, M., and Huleihel, M. (2002) FTIR-spectroscopic method for detection of cells infected with herpes viruses. Biopolymers (Biospectroscopy) 67, 406–412.

    Article  CAS  Google Scholar 

  29. Huleihel, M., Talyshinsky, M., Souprun, Y., and Erukhimovitch, V. (2003) Spectroscopic evaluation of cells infected with herpes viruses and treated with red microalgal polysaccharides. Appl. Spectrosc. 57, 390–395.

    Article  PubMed  CAS  Google Scholar 

  30. Huleihel, M., Ishanu, V., Tal, J., and Arad, S. (2001) Antiviral effect of red microalgal polysaccharides on herpes simplex and varicella zoster viruses. J. Appl. Phycol. 13, 127–134.

    Article  CAS  Google Scholar 

  31. Dukor, R. K. (2001) Vibrational spectroscopy in the detection of cancer, in Handbook of Vibrational Spectroscopy (Chalmers, J. M. and Griffiths, P. R., eds.), John Wiley & Sons, New York, pp. 3335–3361.

    Google Scholar 

  32. Lasch, P. and Naumann, D. (1998) FTIR microspectroscopic imajing of human carcinoma thin sections based on pattern recognition techniques. Cell. Mol. Biol. 44, 189–202.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Erukhimovitch, V., Talyshinsky, M., Souprun, Y., Huleihel, M. (2005). FTIR Microscopy Detection of Cells Infected With Viruses. In: Lieberman, P.M. (eds) DNA Viruses. Methods in Molecular Biology, vol 292. Humana Press. https://doi.org/10.1385/1-59259-848-X:161

Download citation

  • DOI: https://doi.org/10.1385/1-59259-848-X:161

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-353-4

  • Online ISBN: 978-1-59259-848-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics