Skip to main content

In Vitro Physical Stimulation of Tissue-Engineered and Native Cartilage

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 100))

Abstract

Because of the limited availability of donor cartilage for resurfacing defects in articular surfaces, there is tremendous interest in the in vitro bioengineering of cartilage replacements for clinical applications. However, attaining mechanical properties in engineered cartilaginous constructs that approach those of native cartilage has not been previously achieved when constructs are cultured under free-swelling conditions. One approach toward stimulating the development of constructs that are mechanically more robust is to expose them to physical environments that are similar, in certain ways, to those encountered by native cartilage. This is a strategy motivated by observations in numerous short-term experiments that certain mechanical signals are potent stimulators of cartilage metabolism. On the other hand, excess mechanical loading can have a deleterious effect on cartilage. Culture conditions that include a physical stimulation component are made possible by the use of specialized bioreactors. This chapter addresses some of the issues involved in using bioreactors as integral components of cartilage tissue engineering and in studying the physical regulation of cartilage. We first consider the generation of cartilaginous constructs in vitro. Next we describe the rationale and design of bioreactors that can impart either mechanical deformation or fluid-induced mechanical signals.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Freed, L. E., Vunjak-Novakovic, G., and Langer, R. (1993) Cultivation of cellpolymer cartilage implants in bioreactors. J. Cell. Biochem. 51, 257–264.

    Article  CAS  PubMed  Google Scholar 

  2. Dunkelman, N. S., Zimber, M. P., LeBaron, R. G., Pavelec, R., Kwan, M., and Purchio, A. F. (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechno.l Bioeng. 46, 299–305.

    Article  CAS  Google Scholar 

  3. Wakitani, S., Kimura, T., Hirooka, A., et al. (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J. Bone Joint. Surg. Br. 71-B, 74–80.

    Google Scholar 

  4. Kim, W. S., Vacanti, J. P., Cima, L., et al. (1994) Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast. Reconstr. Surg. 94, 233–237.

    Article  CAS  PubMed  Google Scholar 

  5. Masuda, K., Sah, R. L., Hejna, M. J., and Thonar, E. J.-M. A. (2003) A novel two-step method for the formation of tissue engineered cartilage: the alginaterecovered-chondrocyte (ARC) method. J. Orthop. Res. 21, 139–148.

    Article  CAS  PubMed  Google Scholar 

  6. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895.

    Article  CAS  PubMed  Google Scholar 

  7. Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sjogren-Jansson, E., and Lindahl, A. (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. 374, 212–234.

    Article  PubMed  Google Scholar 

  8. Breinan, H. A., Minas, T., Barone, L., et al. (1998) Histological evaluation of the course of healing of canine articular cartilage defects treated with cultured autologous chondrocytes. Tissue Eng. 4, 101–114.

    Article  Google Scholar 

  9. Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., and Peterson, L. (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin. Orthop. 326, 270–283.

    Article  PubMed  Google Scholar 

  10. Nehrer, S., Breinan, H. H., Ashkar, S., et al. (1998) Characteristics of articular chondrocytes seeded in collagen matrices in vitro. Tissue Eng. 4, 175–183.

    Article  Google Scholar 

  11. Sams, A. E. and Nixon, A. J. (1995) Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage 3, 47–59.

    Article  CAS  PubMed  Google Scholar 

  12. Shortkroff, S., Barone, L., Hsu, H. P., et al. (1996) Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials 17, 147–154.

    Article  CAS  PubMed  Google Scholar 

  13. Wakitani, S., Goto, T., Young, R. G., Mansour, J. M., Goldberg, V. M., and Caplan, A. I. (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue. Eng. 4, 429–444.

    Article  CAS  PubMed  Google Scholar 

  14. Muir, H. (1995) The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17, 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  15. Slowman, S. D. and Brandt, K. D. (1986) Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unloaded sites. Arthritis Rheum. 29, 88–94.

    Article  CAS  PubMed  Google Scholar 

  16. Kiviranta, I., Jurvelin, J., Tammi, M., Saamanen, A.-M., and Helminen, H. J. (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum. 30, 801–809.

    Article  CAS  PubMed  Google Scholar 

  17. Behrens, F., Kraft, E. L., and Oegema, T. R. (1989) Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J. Orthop. Res. 7, 335–343.

    Article  CAS  PubMed  Google Scholar 

  18. Caterson, B. and Lowther, D. A. (1978) Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochim. Biophys. Acta 540, 412–422.

    CAS  Google Scholar 

  19. Jurvelin, J., Kiviranta, I., Saamanen, A.-M., Tammi, M., and Helminen, H. J. (1989) Partial restoration of immobilization-induced softening of canine articular cartilage after remobilization of the knee (stifle) joint. J. Orthop. Res. 7, 352–358.

    Article  CAS  PubMed  Google Scholar 

  20. Saamanen, A.-M., Tammi, M., Jurvelin, J., Kiviranta, I., and Helminen, H. J. (1990) Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J. Orthop. Res. 8, 863–873.

    Article  CAS  PubMed  Google Scholar 

  21. Kiviranta, I., Tammi, M., Jurvelin, J., Saamanen, A. M., and Helminen, H. J. (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J. Orthop. Res. 6, 188–195.

    Article  CAS  PubMed  Google Scholar 

  22. Helminen, H. J., Jurvelin, J., Kiviranta, I., Paukkonen, K., Säämänen, A.-M., and Tammi, M. (1987) Joint loading effects on articular cartilage: a historical review, in Joint Loading: Biology and Health of Articular Structures (Helminen, H. J., Kiviranta, I., Tammi, M., Säämänen, A.-M., Paukkonen, K,. and Jurvelin, J., eds.), Wright, Bristol, UK, pp. 1–46.

    Google Scholar 

  23. Grodzinsky, A. J. (1983) Electromechanical and physicochemical properties of connective tissue. CRC Crit. Rev. Bioeng. 9, 133–199.

    CAS  Google Scholar 

  24. Maroudas, A. (1979) Physico-chemical properties of articular cartilage, in Adult Articular Cartilage 2nd ed., (Freeman, M. A. R., ed.), Pitman Medical, Tunbridge Wells, England, UK, pp. 215–290.

    Google Scholar 

  25. Mow, V. C., Wang, C. C., and Hung, C. T. (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7, 41–58.

    Article  CAS  PubMed  Google Scholar 

  26. Urban, J. P. (2000) Present perspectives on cartilage and chondrocyte mechanobiology. Biorheology 37, 185–190.

    CAS  PubMed  Google Scholar 

  27. Grodzinsky, A. J., Levenston, M. E., Jin, M., and Frank, E. H. (2000) Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691–713.

    Article  CAS  PubMed  Google Scholar 

  28. Guilak, F., Sah, R. L., and Setton, L. A. (1997) Physical regulation of cartilage metabolism, in Basic Orthopaedic Biomechanics 2nd Ed. (Mow, V. C. and Hayes, W. C., eds.), Raven, New York, NY, pp. 179–207.

    Google Scholar 

  29. Burton-Wurster, N., Vernier-Singer, M., Farquhar, T., and Lust, G. (1993) Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. J. Orthop. Res. 11, 717–729.

    Article  CAS  PubMed  Google Scholar 

  30. Gray, M. L., Pizzanelli, A. M., Grodzinsky, A. J., and Lee, R. C. (1988) Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6, 777–792.

    Article  CAS  PubMed  Google Scholar 

  31. Guilak, F., Meyer, B. C., Ratcliffe, A., and Mow, V. C. (1994) The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 2, 91–101.

    Article  CAS  PubMed  Google Scholar 

  32. Jones, I. L., Klamfeldt, D. D. S., and Sandstrom, T. (1982) The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin. Orthop. 165, 283–289.

    CAS  PubMed  Google Scholar 

  33. Sah, R. L., Kim, Y. J., Doong, J. H., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636.

    Article  CAS  PubMed  Google Scholar 

  34. Copray, J. C. V. M., Jansen, H. W. B., and Duterloo, H. S. (1985) Effect of compressive forces on phosphatase activity in mandibular condylar cartilage of the rat in vitro. J. Anat. 140, 479–489.

    PubMed  Google Scholar 

  35. Palmoski, M. J. and Brandt, K. D. (1984) Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27, 675–681.

    Article  CAS  PubMed  Google Scholar 

  36. Parkkinen, J. J., Lammi, M. J., Helminen, H. J., and Tammi, M. (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J. Orthop. Res. 10, 610–620.

    Article  CAS  PubMed  Google Scholar 

  37. Buschmann, M. D., Kim, Y. J., Wong, M., Frank, E., Hunziker, E. B., and Grodzinsky, A. J. (1999) Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366, 1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, Y. J., Sah, R. L., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311, 1–12.

    Article  CAS  PubMed  Google Scholar 

  39. Buschmann, M. D., Gluzband, Y. A., and Grodzinsky, A. J. (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108, 1497–1508.

    CAS  PubMed  Google Scholar 

  40. Lee, D. A. and Bader, D. L. (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181–188.

    Article  PubMed  Google Scholar 

  41. Ragan, P. M., Chin, V. I., Hung, H. H., et al. (2000) Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch. Biochem. Biophys. 383, 256–264.

    Article  CAS  PubMed  Google Scholar 

  42. Fukuda, K., Kumano, F., Asada, S., Saitoh, M., and Tanaka, S. (1997) Cyclic tensile stretch loaded on bovine articular chondrocytes inhibits protein kinase C activity. Osteoarthritis Cartilage 5, A38.

    Google Scholar 

  43. Smith, R. L., Donlon, B. S., Gupta, M. K., et al. (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J. Orthop. Res. 13, 824–831.

    Article  CAS  PubMed  Google Scholar 

  44. Parkkinen, J. J., Ikonen, J., Lammi, M. J., Laakkonen, J., Tammi, M., and Helminen, H. J. (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys. 300, 458–465.

    Article  CAS  PubMed  Google Scholar 

  45. Thibault, M., Poole, A. R., and Buschmann, M. D. (2002) Cyclic compression of cartilage/bone explants in vitro leads to physical weakening, mechanical breakdown of collagen and release of matrix fragments. J. Orthop. Res. 20, 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  46. Loening, A., Levenston, M., James, I., Nuttal, M., et al. (2000) Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch. Biochem. Biophys. 381, 205–212.

    Article  CAS  PubMed  Google Scholar 

  47. D’Lima, D. D., Hashimoto, S., Chen, P. C., Colwell, C. W. Jr., and Lotz, M. K. (2001) Impact of mechanical trauma on matrix and cells. Clin. Orthop. 391(Suppl.), S90–S99.

    PubMed  Google Scholar 

  48. Kurz, B., Jin, M., Patwari, P., Cheng, D. M., Lark, M. W., and Grodzinsky, A. J. (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J. Orthop. Res. 19, 1140–1146.

    Article  CAS  PubMed  Google Scholar 

  49. Clements, K. M., Bee, Z. C., Crossingham, G. V., Adams, M. A., and Sharif, M. (2001) How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthritis Cartilage 9, 499–507.

    Article  CAS  PubMed  Google Scholar 

  50. Quinn, T. M., Allen, R. G., Schalet, B. J., Perumbuli, P., and Hunziker, E. B. (2001) Matrix and cell injury due to sub-impact loading of adult bovine articular cartilage explants: effects of strain rate and peak stress. J. Orthop. Res. 19, 242–249.

    Article  CAS  PubMed  Google Scholar 

  51. D’Lima, D. D., Hashimoto, S., Chen, P. C., Lotz, M. K., and Colwell, C. W. Jr. (2001) Cartilage injury induces chondrocyte apoptosis. J. Bone Joint. Surg. Am. 83-A(Suppl. 2), 19–21.

    PubMed  Google Scholar 

  52. Freed, L. E., Grande, D. A., Lingbin, Z., Emmanual, J., Marquis, J. C., and Langer, R. (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J. Biomed. Mater. Res. 28, 891–899.

    Article  CAS  PubMed  Google Scholar 

  53. Amiel, D., Chu, C. R., Sah, R. L., and Coutts, R. D. (1998) Tissue engineering of articular cartilage: perichondrial cells in osteochondral repair. Cells Mat. 8, 161–174.

    Google Scholar 

  54. Nakahara, H., Goldberg, V. M., and Caplan, A. I. (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465–476.

    Article  CAS  PubMed  Google Scholar 

  55. Wakitani, S., Goto, T., Pineda, S. J., et al. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint. Surg. 76-A, 579–592.

    Google Scholar 

  56. Johnstone, B. and Yoo, J. U. (1999) Autologous mesenchymal progenitor cells in articular cartilage repair. Clin. Orthop. 367S, 156–162.

    Google Scholar 

  57. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228.

    Article  CAS  PubMed  Google Scholar 

  58. Häuselmann, H. J., Masuda, K., Hunziker, E. B., et al. (1996) Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am. J. Physiol. 40, C742–C752.

    Google Scholar 

  59. Chu, C. R., Coutts, R. D., Yoshioka, M., Harwood, F. L., Monosov, A. Z., and Amiel, D. (1995) Articular cartilage repair using allogeneic perichondrocyte seeded biodegradable porous polylactic acid (PLA): a tissue engineering study. J. Biomed. Mater. Res. 29, 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  60. Moran, J. M., Pazzano, D., and Bonassar, L. J. (2003) Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63–70.

    Article  CAS  PubMed  Google Scholar 

  61. Ben-Yishay, A., Grande, D. A., Schwartz, R. E., Menche, D., and Pitman, M. D. (1995) Repair of articular cartilage defects with collagen-chondrocyte allografts. Tissue Eng. 1, 119–133.

    Article  CAS  PubMed  Google Scholar 

  62. Lee, C. R., Grodzinsky, A. J., Hsu, H. P., and Spector, M. (2003) Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J. Orthop. Res. 21, 272–281.

    Article  CAS  PubMed  Google Scholar 

  63. Solchaga, L. A., Yoo, J. U., Lundberg, M., et al. (2000) Hyasluronanbased polymers in the treatment of osteochondral defects. J. Orthop. Res. 18, 773–780.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, K. Y. and Mooney, D. J. (2001) Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879.

    Article  CAS  PubMed  Google Scholar 

  65. Mauck, R. L., Soltz, M. A., Wang, C. C., et al. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122, 252–260.

    Article  CAS  PubMed  Google Scholar 

  66. Guo, J. F., Jourdian, G. W., and MacCallum, D. K. (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect. Tissue Res. 19, 277–297.

    Article  CAS  PubMed  Google Scholar 

  67. van Susante, J. L., Buma, P., Schuman, L., Homminga, G. N., van den Berg, W. B., and Veth, R. P. (1999) Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 20, 1167–1175.

    Article  PubMed  Google Scholar 

  68. Bryant, S. J. and Anseth, K. S. (2003) Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. 64A, 70–79.

    Article  CAS  Google Scholar 

  69. Elisseeff, J., Anseth, K., Sims, D., McIntosh, W., Randolph, M., and Langer, R. (1999) Transdermal photopolymerization for minimally invasive implantation. Proc. Natl. Acad. Sci. USA 96, 3104–3107.

    Article  CAS  PubMed  Google Scholar 

  70. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  71. Kandel, R. A., Chen, H., Clark, J., and Renlund, R. (1995) Transplantation of cartilagenous tissue generated in vitro into articular joint defects. Artif. Cells Blood Substit. Immobil. Biotechnol. 23, 565–577.

    Article  CAS  PubMed  Google Scholar 

  72. Williams, K. A., Saini, S., and Wick, T. M. (2002) Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Prog. 18, 951–963.

    Article  CAS  PubMed  Google Scholar 

  73. Park, A., Wu, B., and Griffith, L. G. (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. J. Biomater. Sci. Polym. Ed. 9, 89–110.

    Article  CAS  PubMed  Google Scholar 

  74. Chang, S. C., Rowley, J. A., Tobias, G., et al. (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res. 55, 503–511.

    Article  CAS  PubMed  Google Scholar 

  75. Khouri, R. K., Koudsi, B., and Reddi, H. (1991) Tissue transformation into bone in vivo. A potential practical application. JAMA 266, 1953–1955.

    Article  CAS  PubMed  Google Scholar 

  76. Pei, M., Solchaga, L. A., Seidel, J., et al. (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. 16, 1691–1694.

    CAS  PubMed  Google Scholar 

  77. Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R., and Freed, L. E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193–202.

    Article  CAS  PubMed  Google Scholar 

  78. Martin, I., Obradovic, B., Treppo, S., et al. (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37, 141–147.

    CAS  PubMed  Google Scholar 

  79. Ahsan, T., Chen, A. C., Chin, L., et al. (2003) Effects of long-term growth on tissue engineered cartilage. Trans. Orthop. Res. Soc. 28, 309.

    Google Scholar 

  80. Freshney, R. I. (1994) Culture of Animal Cells: A Manual of Basic Technique 3rd. Ed., Wiley-Liss, New York, NY.

    Google Scholar 

  81. Sah, R. L., Doong, J. Y. H., Grodzinsky, A. J., Plaas, A. H. K., and Sandy, J. D. (1991) Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch. Biochem. Biophys. 286, 20–29.

    Article  CAS  PubMed  Google Scholar 

  82. Davisson, T. H., Sah, R. L., and Ratcliffe, A. R. (2002) Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8, 807–816.

    Article  CAS  PubMed  Google Scholar 

  83. Gray, M. L., Pizzanelli, A. M., Lee, R. C., Grodzinsky, A. J., and Swann, D. A. (1989) Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta 991, 415–425.

    CAS  PubMed  Google Scholar 

  84. Kisiday, J., Siparsky, P. N., and Grodzinsky, A. J. (2003) Anabolic and catabolic response to dynamic compression in a chondrocyte-seeded self-assembling peptide hydrogel. Trans. Orthop. Res. Soc. 28, 304.

    Google Scholar 

  85. Kisiday, J., Jin, M., and Grodzinsky, A. J. (2002) Effects of dynamic compressive loading duty cycle on in vitro conditioning of chondrocyte-seeded peptide and agarose scaffolds. Trans. Orthop. Res. Soc. 27, 216.

    Google Scholar 

  86. Williamson, A. K., Chen, A. C., and Sah, R. L. (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J. Orthop. Res. 19, 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  87. Quinn, T. M., Grodzinsky, A. J., Hunziker, E. B., and Sandy, J. D. (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J. Orthop. Res. 16, 490–499.

    Article  CAS  PubMed  Google Scholar 

  88. Jeffrey, J. E., Thomson, L. A., and Aspden, R. M. (1997) Matrix loss and synthesis following a single impact load on articular cartilage in vitro. Biochim. Biophys. Acta 1334, 223–232.

    CAS  PubMed  Google Scholar 

  89. Jin, M., Frank, E. H., Quinn, T. M., Hunziker, E. B., and Grodzinsky, A. J. (2001) Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395, 41–48.

    Article  CAS  PubMed  Google Scholar 

  90. Frank, E. H., Jin, M., Loening, A. M., Levenston, M. E., and Grodzinsky, A. J. (2000) A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J. Biomech. 33, 1523–1527.

    Article  CAS  PubMed  Google Scholar 

  91. Vunjak-Novakovic, G., Martin, I., Obradovic, B., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130–139.

    Article  CAS  PubMed  Google Scholar 

  92. Vunjak-Novakovic, G., Obradovic, B., Martin, I., and Freed, L. E. (2002) Bioreactor studies of native and tissue engineered cartilage. Biorheology 39, 259–268.

    CAS  PubMed  Google Scholar 

  93. Obradovic, B., Meldon, J. H., Freed, L. E., and Vunjak-Novakovic, G. (2000) Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AICHE J. 46, 1860–1871.

    Article  CAS  Google Scholar 

  94. Davisson, T. H., Ratcliffe, A., and Sah, R. L. (2000) Flow-induced physical stimuli during cartilage tissue engineering. Trans. Orthop. Res. Soc. 25, 610.

    Google Scholar 

  95. Davisson, T. H., Wu, F. J., Jain, D., Sah, R. L., and Ratcliffe, A. R. (1999) Effect of perfusion on the growth of tissue engineered cartilage. Trans. Orthop. Res. Soc. 24, 811.

    Google Scholar 

  96. Sittinger, M., Schultz, O., Keyszer, G., Minuth, W. W., and Burmester, G. R. (1997) Artificial tissues in perfusion culture. Int. J. Artif. Organs 20, 57–62.

    CAS  PubMed  Google Scholar 

  97. Pazzano, D., Mercier, K. A., Moran, J. M., et al. (2000) Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol. Prog. 16, 893–896.

    Article  CAS  PubMed  Google Scholar 

  98. Davisson, T. H., Kunig, S., Chen, A. C., Sah, R. L., and Ratcliffe, A. (2002) The effects of perfusion and compression on modulation of tissue engineered cartilage. Trans. Orthop. Res. Soc. 277, 488.

    Google Scholar 

  99. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745–758.

    Article  CAS  PubMed  Google Scholar 

  100. Mok, S. S., Masuda, K., Häuselmann, H. J., Aydelotte, M. B., and Thonar, E. J. (1994) Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J. Biol. Chem. 269, 33,021–33,027.

    CAS  PubMed  Google Scholar 

  101. Giurea, A., Klein, T. J., Chen, A. C., et al. (2003) Adhesion of perichondrial cells to a polylactic acid scaffold. J. Orthop. Res. 21, 584–589.

    Article  CAS  PubMed  Google Scholar 

  102. Bugbee, W. D. and Convery, F. R. (1999) Osteochondral allograft transplantation. Clin. Sports Med. 18, 67–75.

    Article  CAS  PubMed  Google Scholar 

  103. Outerbridge, H. K., Outerbridge, A. R., and Outerbridge, R. E. (1995) The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J. Bone Joint Surg. Am. 77-A, 65–72.

    Google Scholar 

  104. McDermott, A. G., Langer, F., Pritzker, K. P., and Gross, A. E. (1985) Fresh small-fragment osteochondral allografts. Long-term follow-up study on first 100 cases. Clin. Orthop. 197, 96–102.

    PubMed  Google Scholar 

  105. Yamashita, F., Sakakida, K., Suzu, F., and Takai, S. (1985) The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin. Orthop. 201, 43–50.

    PubMed  Google Scholar 

  106. Bobic, V. (1996) Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study. Knee Surg. Sports Traumatol. Arthrosc. 3, 262–264.

    Article  CAS  PubMed  Google Scholar 

  107. Matsusue, Y., Yamamuro, T., and Hama, H. (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9, 318–321.

    Article  CAS  PubMed  Google Scholar 

  108. Benya, P. D. and Shaffer, J. D. (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224.

    Article  CAS  PubMed  Google Scholar 

  109. Bonaventure, J., Kadhom, N., Cohen-Solal, L., et al. (1994) Re-expression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212, 97–104.

    Article  CAS  PubMed  Google Scholar 

  110. Chen, A. C. and Sah, R. L. (1998) The effect of static compression on proteoglycan synthesis by chondrocytes transplanted to articular cartilage in vitro. J. Orthop. Res. 16, 542–550.

    Article  PubMed  Google Scholar 

  111. Li, K. W., Williamson, A. K., Wang, A. S., and Sah, R. L. (2001) Growth responses of cartilage to static and dynamic compression. Clin. Orthop. 391S, 34–48.

    Google Scholar 

  112. Schreiber, R. E., Ilten-Kirby, B. M., Dunkelman, N. S., et al. (1999) Repair of osteochondral defects with allogeneic tissue engineered cartilage implants. Clin. Orthop. 367(Suppl), 382–395.

    Google Scholar 

  113. Klein, T. K., Schumacher, B. L., Schmidt, T. A., et al. (2003) Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthritis Cartilage 11, 592–602.

    Article  Google Scholar 

  114. Davisson, T. H., Kunig, S., Chen, A. C., Sah, R. L., and Ratcliffe, A. (2002) Static and dynamic compression modulate biosynthesis in tissue engineered cartilage. J. Orthop. Res. 20, 842–848.

    Article  CAS  PubMed  Google Scholar 

  115. Sah, R. L. (2003) The biomechanical faces of articular cartilage, in The Many Faces of Osteoarthritis (Hascall, V. C., Kuettner, K. E., and Krall, A. M., eds.), Birkhauser Verlag, Basel, Switzerland, pp. 506.

    Google Scholar 

  116. Bullough, P. G. and Cawston, T. E. (1994) Pathology and biochemistry of osteoarthritis, in Color Atlas and Text of Osteoarthritis (Doherty, M., ed.), Times Mirror International, London, UK, pp. 29–60.

    Google Scholar 

  117. Hunziker, E. B. (1992) Articular cartilage structure in humans and experimental animals, in Articular Cartilage and Osteoarthritis (Kuettner, K. E., Schleyerbach, R., Peyron, J. G., and Hascall, V. C., eds.), Raven, New York, NY, pp. 183–199.

    Google Scholar 

  118. Rosenberg, L. C. and Buckwalter, J. A. (1986) Cartilage proteoglycans, in Articular Cartilage Biochemistry (Kuettner, K., Schleyerbach, R., and Hascall, V. C., eds.), Raven, New York, NY, pp. 39–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Li, K.W., Klein, T.J., Chawla, K., Nugent, G.E., Bae, W.C., Sah, R.L. (2004). In Vitro Physical Stimulation of Tissue-Engineered and Native Cartilage. In: Sabatini, M., Pastoureau, P., De Ceuninck, F. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine™, vol 100. Humana Press. https://doi.org/10.1385/1-59259-810-2:325

Download citation

  • DOI: https://doi.org/10.1385/1-59259-810-2:325

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-247-6

  • Online ISBN: 978-1-59259-810-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics