Skip to main content

Determination of Adrenergic Receptor mRNAs by Quantitative Reverse Transcriptase-Polymerase Chain Reactions

  • Protocol
  • 488 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 126))

Abstract

The quantification of adrenergic receptor (AR) mRNAs is an important tool in the study of the physiological and pathophysiological regulation of these receptors. Alterations of the levels of these mRNA represent one of the many mechanisms that regulate receptor signaling (1,2). Such alterations can be triggered by stimulation of the receptors themselves, but also by a variety of other causes. In patients, reductions of receptor mRNA levels have been observed in response to treatment with receptor agonists; in pathophysiological states, the best-known example is the downregulation of cardiac β1-ARs in heart failure. On the other hand, upregulation of receptor mRNAs has been observed in response to stimuli, such as corticosteroids and thyroid hormones.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Collins, S., Caron, M. G., and Lefkowitz, R. J. (1991) Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu. Rev. Physiol. 53, 497–508.

    Article  PubMed  CAS  Google Scholar 

  2. Lohse, M. J. (1993) Molecular mechanisms of membrane receptor desensitization. Biochim. Biophys. Acta. 1179, 171–188.

    Article  PubMed  CAS  Google Scholar 

  3. Saiki, R. K., Scharf, F., Faloona, K. B., Mullis, K. B., Horn, G. T., Ehrlich, A. H., et al. (1985) Enzymatic amplfication of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  4. Chelly, J., Kaplan, J. C., Gautron, S., and Kahn, A. (1988) Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature 333, 858–860.

    Article  PubMed  CAS  Google Scholar 

  5. Gilliland, G., Perrin, S., Blanchard, K., and Bunn, H. F. (1990) Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 2725–2729.

    Article  PubMed  CAS  Google Scholar 

  6. Engelhardt, S., Böhm, M., Erdmann, E., and Lohse, M. J. (1996) Analysis of β-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of β1-adrenergic receptor mRNA in heart failure. J. Am. Coll. Cardiol. 27, 146–154.

    Article  PubMed  CAS  Google Scholar 

  7. Jeffreys, A. J., Wilson, V., Neumann, R., and Keyte, J. (1988) Amplification of human minisatellites by the polymerase chain reaction: Towards DNA fingerprinting of single cells. Nucleic Acids Res. 16, 10,952–10,971.

    Article  Google Scholar 

  8. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1994–1998) Current Protocols in Molecular Biology. Wiley, New York.

    Google Scholar 

  9. Scofield, M. A., Liu, F., Abel, P. W., and Jeffries, W. B. (1995) Quantification of steady state expression of mRNA for alpha-1 adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. J. Pharmacol. Exp. Ther. 275, 1035–1042.

    PubMed  CAS  Google Scholar 

  10. Feve, B., Elhadri, K., Quignard-Boulange, A., and Pairault, J. (1994) Transcriptional down-regulation by insulin of the β3-adrenergic receptor expression in 3T3-F442A adipocytes: a mechanism for repressing the cAMP signaling pathway. Proc. Natl. Acad. Sci. USA 91, 5677–5681.

    Article  PubMed  CAS  Google Scholar 

  11. Evans, B. A., Papaioannou, M., Bonazzi, V. R., and Summers, R. J. (1996) Expression of β3-adrenoceptor mRNA in rat tissues. Br. J. Pharmacol. 117, 210–216.

    PubMed  CAS  Google Scholar 

  12. Ungerer, M., Böhm, M., Elce, J. S., Erdmann, E., and Lohse, M. J. (1993) Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87, 454–463.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Engelhardt, S., Lohse, M.J. (2000). Determination of Adrenergic Receptor mRNAs by Quantitative Reverse Transcriptase-Polymerase Chain Reactions. In: Machida, C.A. (eds) Adrenergic Receptor Protocols. Methods in Molecular Biology™, vol 126. Humana Press. https://doi.org/10.1385/1-59259-684-3:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-684-3:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-602-4

  • Online ISBN: 978-1-59259-684-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics