Skip to main content

Expression of Recombinant Antibodies in Mammalian Cell Lines

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 248))

Abstract

Since the advent of hybridoma technology, mammalian-cell culture has been employed for the expression and high-level production of monoclonal antibodies (MAbs). Recent adaptations in recombinant technology have developed the use of numerous prokaryotic and eukaryotic systems for the expression of heterologous molecules. The major systems used for MAb expression have been reviewed and compared (1,2), and a number of the key methodologies are detailed within this series. Prokaryotic expression systems offer the potential of high production yields at a substantial reduced cost of goods (see Chapter 14). However, because of the complexity of the protein-folding pathway, bacterial expression has been limited to small antibody fragments, and in some cases may require refolding to produce a biologically active product. Another limitation is that recombinant MAbs expressed in bacteria are aglycosylated and can result in the reduction or loss of biological effector functions (3). For large, multidomain molecules such as full-length MAbs or complex recombinant antibody fragments, eukaryotic systems such as mammalian or yeast expression have been utilized. Currently, nine USFDA-licensed Mabs for in vivo human use have been expressed from mammalian-cell culture for commercial production.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Verma, R., Boleti, E., and George, A.J.T. (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods 216, 165–181.

    Article  PubMed  CAS  Google Scholar 

  2. Geisse, S. and Kocher, H. P. (1999) Protein expression in mammalian and insect cells systems. Methods Enzymol. 306, 19–41.

    Article  PubMed  CAS  Google Scholar 

  3. Wright, A. and Morrison, S. (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15, 26–32.

    Article  PubMed  CAS  Google Scholar 

  4. Gluzman, Y. (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182.

    Article  PubMed  CAS  Google Scholar 

  5. Trill, J. J., Shatzman, A. R., and Ganquly, S. (1995) Production of monoclonal antibodies in COS and CHO cells. Curr. Opin. Biotechnol. 6, 553–560.

    Article  PubMed  CAS  Google Scholar 

  6. Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.

    Article  PubMed  CAS  Google Scholar 

  7. Kaufman, R. J. (1990) Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol. 185, 537–566.

    Article  PubMed  CAS  Google Scholar 

  8. Bebbington, C., Renner, G., Thomson, S., King, D., Abrams, D., and Yarranton, G. T. (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selection marker. Biotechnology 10, 169–175.

    Article  PubMed  CAS  Google Scholar 

  9. Urlaub, G. and Chasin, L. A. (1980) Isolation of Chinese hamster ovary cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77, 4216–4220.

    Article  PubMed  CAS  Google Scholar 

  10. Page, M. J., Sydenham, M.A. (1991) High level expression of a humanized monoclonal antibody CAMPATH-1H in Chinese hamster ovary cells. Biotechnology 9, 64–68.

    Article  PubMed  CAS  Google Scholar 

  11. Yoo, E. M., Chintalacharuvu, K. R., Penichet, M. L., and Morrison, S. L. (2002) Myeloma expression systems. J. Immunol. Methods 261, 1–20.

    PubMed  CAS  Google Scholar 

  12. Bebbington, C. R. (1991) Expression of antibody genes in nonlymphoid mammalian cells. Methods: A Companion to Methods in Enzymology 2, 136–145.

    Article  CAS  Google Scholar 

  13. Peakman, T. C., Worden, J., Harris, R. H., Cooper, H., Tite, J., Page, M. J., et al. (1994) Comparison of expression of a humanized monoclonal antibody in mouse NS0 myeloma cells and Chinese Hamster Ovary cells. Hum. Antibod. Hybrid. 5(1 and 2), 65–74.

    CAS  Google Scholar 

  14. Zhou, W., Chen, C., Buckland, B., and Aunins, J. (1997) Fed-batch culture of recombinant NS0 myeloma cells with high monoclonal antibody production. Biotechnol. Bioeng. 55, 783–792.

    Article  PubMed  CAS  Google Scholar 

  15. Chadd, H. E. and Chamow, S. M. (2001) Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 12, 188–194.

    Article  PubMed  CAS  Google Scholar 

  16. Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by large-scale. Curr. Opin. Biotechnol. 2, 180–187.

    Article  Google Scholar 

  17. Shively, J. E. and Beatty, J. D. (1985) CEA-related antigens: molecular biology and clinical significance. Crit. Rev. Oncol. Hematol. 2, 355–399.

    Article  PubMed  CAS  Google Scholar 

  18. Hammarstrom, S. (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Sem. in Cancer Biol. 9, 67–81.

    Article  CAS  Google Scholar 

  19. Wu, A. M. and Yazaki, P. J. (2000) Designer genes: recombinant antibody fragments for biological imaging. Quarterly Journal of Nuclear Medicine 44, 268–283.

    PubMed  CAS  Google Scholar 

  20. Goldenberg, D. M. (2002) Targeted therapy of cancer with radiolabeled antibodies. Journal of Nuclear Medicine 43, 693–713.

    PubMed  CAS  Google Scholar 

  21. Wagener, C., Yang, Y.H.J., Crawford, F. G., and Shively, J. E. (1983) Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: a systematic approach for the determination of epitope specificities of monoclonal antibodies. J. Immunol. 130, 2308–2315.

    PubMed  CAS  Google Scholar 

  22. Neumaier, M., Fenger, U., and Wagener, C. (1985) Monoclonal antibodies for carcinoembryonic antigen (CEA) as a model system: identification of two novel CEA-related antigens in meconium and colorectal carcinoma tissue by Western blots and differential immunoaffinity chromatography. J. Immunol. 135, 3604–3609.

    PubMed  CAS  Google Scholar 

  23. Wu, A. M., Williams, L. E., Zieran, L., Padma, A., Sherman, M., Bebb, G. G., et al. (1999) Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging. Tumor Targeting 4, 1–12.

    Google Scholar 

  24. Hu, S.-Z., Shively, L., Raubitschek, A. A., Sherman, M., Williams, L. E., Wong, J.Y.C., et al. (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid high-level targeting of xenografts. Cancer Res. 56, 3055–3061.

    PubMed  CAS  Google Scholar 

  25. Xu, X., Clarke, P., Szalai, G., Shively, J. E., Williams, L. E., Shyr, Y., et al. (2000) Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res. 60, 4475–4484.

    PubMed  CAS  Google Scholar 

  26. Yazaki, P. J., Shively, L., Clark, C., Cheung, C.-W., Le, W., Szpikowska, B., et al. (2001) Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J. Immunol. Methods 253, 195–208.

    Article  PubMed  CAS  Google Scholar 

  27. Laemmli, U. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  28. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  29. Gagnon, P. (1996) Purification tools for monoclonal antibodies. Validated Biosystems, Tuscon, AZ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yazaki, P.J., Wu, A.M. (2004). Expression of Recombinant Antibodies in Mammalian Cell Lines. In: Lo, B.K.C. (eds) Antibody Engineering. Methods in Molecular Biology™, vol 248. Humana Press. https://doi.org/10.1385/1-59259-666-5:255

Download citation

  • DOI: https://doi.org/10.1385/1-59259-666-5:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-092-2

  • Online ISBN: 978-1-59259-666-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics