Skip to main content

Enzyme-Prodrug Systems

Thymidine Phosphorylase/5′-Deoxy-5-Fluorouridine

  • Protocol
  • 576 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 90))

Abstract

Thymidine phosphorylase (E.C. 2.4.2.4) (TP), also described as the angiogenic platelet-derived endothelial cell growth factor (PD-ECGF) (14), is a homodimeric enzyme with a monomeric molecular mass of about 55 kDa (5,6) that phosphorolytically cleaves thymidine to yield thymine and deoxyribose-1-phosphate (dR-1-P) (7,8). TP is expressed in various human cells and tissues and plays a role in plasma thymidine homeostasis (911). The levels of expression in different human tissues can vary up to 15-fold (12). Moreover, TP levels are increased in several types of malignant tumors when compared to the non-neoplastic regions of these tissues (13) and also in the plasma from tumor-bearing animals and cancer patients (14).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ishikawa, F, Miyazono, K., Hellman, U., et al. (1989) Identification of angiogenic activity and the cloning and expression of platelet derived endothelial cell growth factor. Nature 338, 557–562.

    Article  PubMed  CAS  Google Scholar 

  2. Moghaddam, A. and Bicknell, R. (1992) Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 31, 12,141–12,146.

    Article  PubMed  CAS  Google Scholar 

  3. Sumizawa, T., Furukawa, T., Haraguchi, M., et al. (1993) Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. J. Biochem. 114, 9–14.

    PubMed  CAS  Google Scholar 

  4. Miyadera, K., Sumizawa, T., Haraguchi, M., et al. (1995) Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res. 55, 1687–1690.

    PubMed  CAS  Google Scholar 

  5. Desgranges, C., Razaka, G., and Rabaud, H. (1981) Catabolism of thymidine in human blood platelets—purification and properties of thymidine phosphorylase. Biochim. Biophys. Acta 654, 211–218.

    PubMed  CAS  Google Scholar 

  6. Miyazono, K., Okabe, T., Urabe, A., Takaku, F., and Heldin, C.H. (1987) Purification and properties of an endothelial cell growth factor from human platelets. J. Biol. Chem. 262, 4098–4103.

    PubMed  CAS  Google Scholar 

  7. Friedkin, M. and Roberts, D. (1953) The enzymatic synthesis of nucleosides. Thymidine phosphorylase in mammalian tissue. J. Biol. Chem. 207, 245–256.

    Google Scholar 

  8. Krenitsky T. A. (1968) Pentosyl transfer mechanisms of the mammalian nucleoside phosphorylase. J. Biol. Chem. 243, 2871–2875.

    PubMed  CAS  Google Scholar 

  9. Zimmerman, M. and Seidenberg, J. (1964) Deoxyribosyl transfer. Thymidine phosphorylase and nucleoside deoxyribosyltransferase in normal and malignant tissue. J. Biol. Chem. 230, 2618–2621.

    Google Scholar 

  10. Shaw, J., Smillie, R. H., Miller, A. E., and MacPhee, D. G. (1988) The role of blood platelets in nucleoside metabolism: regulation of thymidine phosphorylase. Mutat. Res. 200, 117–131.

    PubMed  CAS  Google Scholar 

  11. Fox, S. B., Moghaddam, A., Westwood, M., et al. (1995) Platelet-derived endothelial cell growth factor thymidine phosphorylase expression in normal tissues-an immunohistochemical study. J. Pathol. 176, 183–190.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimura, A., Kuwazuru, Y., Furukawa, T., Yoshida, H., Yamada, K., and Akiyama, S. (1990) Purification and tissue distribution of human thymidine phosphorylase; high expression in lymphocytes, reticulocytes and tumors. Biochim. Biophys. Acta 1034, 107–113.

    PubMed  CAS  Google Scholar 

  13. Obrien, T. S., Fox, S. B., Dickinson, A. J., et al. (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet-derived endothelial cell growth factor in primary bladder cancers. Cancer Res. 56, 4799–4804.

    CAS  Google Scholar 

  14. Luccioni, C., Beaumatin, J., Bardot, V., and Lefrancois, D. (1994) Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts. Int. J. Cancer 58, 517–522.

    Article  PubMed  CAS  Google Scholar 

  15. Ciccolini, J., Peillard, L., Evrard, A., et al. (2000) Enhanced antitumor activity of 5-fluorouracil in combination with 2′-deoxyinosine in human colorectal cell lines and human colon tumor xenografts. Clin. Cancer Res. 6, 1529–1535.

    PubMed  CAS  Google Scholar 

  16. Ackland, S. P. and Peters, G. J. (1999) Thymidine phosphorylase: its role in sensitivity and resistance to anticancer drugs. Drug Resist. Updates 2, 205–214.

    Article  CAS  Google Scholar 

  17. Rustum, Y. M., Harstrick, A., Cao, S., et al. (1997) Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors. J. Clin. Oncol. 15, 389–400.

    PubMed  CAS  Google Scholar 

  18. Sobrero, A. F., Aschele, C., and Bertino, J. R. (1997) Fluorouracil in colorectal cancer—A tale of two drugs: implications for biochemical modulation. J. Clin. Oncol. 15, 368–381.

    PubMed  CAS  Google Scholar 

  19. Schwartz, E. L., Baptiste, N., Wadler, S., and Makower, D. (1995) Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J. Biol. Chem. 270, 19,073–19,077.

    Article  PubMed  CAS  Google Scholar 

  20. Haraguchi, M., Furukawa, T., Sumizawa, T., and Akiyama, S. (1993) Sensitivity of human KB cells expressing platelet-derived endothelial cell growth factor factor to pyrimidine antimetabolites. Cancer Res. 53, 5680–5682.

    PubMed  CAS  Google Scholar 

  21. Patterson, A.V., Zhang, H., Moghaddam, A., et al. (1995) Increased sensitivity to the prodrug 5′-deoxy-5-fluorouridine and modulation of 5-fluoro-2′-desoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase. Br. J. Cancer 72, 669–675.

    Article  PubMed  CAS  Google Scholar 

  22. Evrard, A., Cuq, P., Robert, B., Vian, L., Pèlegrin, A., and Cano, J. P. (1999) Enhancement of 5-fluorouracil cytotoxicity by human thymidine phosphorylase expression in cancer cells: in vitro and in vivo study. Int. J. Cancer 80, 465–470.

    Article  PubMed  CAS  Google Scholar 

  23. Kato, Y., Matsukawa, S., Muraoka, R., and Tanigawa, N. (1997) Enhancement of drug sensitivity and a bystander effect in PC-9 cells transfected with a platelet-derived endothelial cell growth factor thymidine phosphorylase cDNA. Br. J. Cancer 75, 506–511.

    Article  PubMed  CAS  Google Scholar 

  24. Evrard, A., Cuq, P., Ciccolini, J., Vian, L., and Cano, J.P. (1999) Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br. J. Cancer 80, 1726–1733.

    Article  PubMed  CAS  Google Scholar 

  25. Morita, T., Matsuzaki, A. and Tokue, A. (2001) Enhancement of sensitivity to capecitabine in human renal carcinoma cells transfected with thymidine phosphorylase cDNA. Int. J. Cancer 92, 451–456.

    Article  PubMed  CAS  Google Scholar 

  26. Fick, J., Barker, F. G. II, Dazin, P., Westphale, E. M., Beyer, E. C., and Israel, M. A. (1995) The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc. Natl. Acad. Sci. USA 92, 11,071–11,075.

    Article  PubMed  CAS  Google Scholar 

  27. Denning, C. and Pitts, J. D. (1997) Bystander effect of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum. Gene Ther. 8, 1825–1835.

    Article  PubMed  CAS  Google Scholar 

  28. Lonn, U., Lonn, S., Nylen, U., and Winblad, G. (1989) 5-Fluoropyrimidine-induced DNA damage in human colonadenocarcinoma and its augmentation by the nucleoside transport inhibitor dipyridamole. Cancer Res. 49, 1085–1089.

    PubMed  CAS  Google Scholar 

  29. Grem, J. L. and Fischer, P. H. (1986) Alteration of fluorouracil metabolism in human colon cancer cells by dipyridamole with a selective increase in fluorodeoxyuridine monophosphate levels. Cancer Res. 46, 6191–6199.

    PubMed  CAS  Google Scholar 

  30. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  31. Ciccolini, J., Peillard, L., Aubert, C., Formento, P., Milano, G., and Catalin, J. (2000) Monitoring of the intracellular activation of 5-fluorouracil to deoxyribonucleotides in HT29 human colon cell line: application to modulation of metabolism and cytotoxicity study. Fundam. Clin. Pharmacol. 14, 147–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Evrard, A., Ciccolini, J., Cuq, P., Cano, JP. (2004). Enzyme-Prodrug Systems. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicine™, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:263

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:263

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics