Skip to main content
Book cover

Gene Probes pp 193–209Cite as

Detection of Polychlorinated Biphenyl-Degrading Organisms in Soil

  • Protocol
  • 876 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 179))

Abstract

Polychlorinated biphenyls (PCBs) are a group of 209 congeners consisting of a biphenyl ring with 1–10 chlorines. In the United States, PCBs, manufactured under the trade name Aroclor, are ubiquitous and recalcitrant pollutants in the environment. PCBs have been shown to biomagnify in the food chain and are associated with chronic health effects (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hooper, S. W., Pettigrew, C. A. and Sayler, G. S. (1990) Ecological fate, effects, and prospects for the elimination of environmental polychlorinated biphenyls (PCBs). Environ. Toxicol. Chem. 9, 655–667.

    Article  CAS  Google Scholar 

  2. Cogliano, V. J. (1998) Assessing the cancer risk from environmental PCBs. Environ. Health Perspect. 106, 317–323.

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed, M. and Focht, D. D. (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can. J. Microbiol. 19, 47–52.

    Article  PubMed  CAS  Google Scholar 

  4. Harkness, M. R., McDermott, J. B., Abramowicz, D. A., Salvo, J. J., Flanagan, W. P., Stephens, M. L., et al. (1993) In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259, 503–507.

    Article  PubMed  CAS  Google Scholar 

  5. Bedard, D. L. and Quensen, J. F., III. (1995) Microbial reductive dechlorination of polychlorinated biphenyls. In Microbial Transformation and Degradation of Toxic Organic Chemicals (Young, L, and Cerniglia, C., eds.), Wiley-Liss, Inc., New York, pp. 127–216.

    Google Scholar 

  6. Sayler, G. S., Sherrill, T. W., Perkins, R. E., Mallory, L. M., Shiaris, M. P., and Pedersen, D. (1982) Impact of coal-coking effluent on sediment microbial communities: a multivariate approach. Appl. Environ. Microbiol. 44, 1118–1129.

    PubMed  CAS  Google Scholar 

  7. Sayler, G. S., Perkins, R. E., Sherrill, T. W., Perkins, B. K. Reid, M. C., Shields, M. S., et al. (1983) Microcosm and experimental pond evaluation of microbial community response to synthetic oil contamination in freshwater sediments. Appl. Environ. Microbiol. 46, 211–219.

    PubMed  CAS  Google Scholar 

  8. Mallory, L. M. and Sayler, G. S. (1983) Heterotrophic bacterial guild structure: relationship to biodegradative populations. Microbial Ecol. 9, 41–55.

    Article  Google Scholar 

  9. Furukawa, K. (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5, 289–300.

    Article  PubMed  CAS  Google Scholar 

  10. Bartels, F., Backhaus, S., Moore, E. R., Timmis, K. N., and Hofer, B. (1999) Occurrence and expression of glutathione-S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology 145, 2821–2834.

    PubMed  CAS  Google Scholar 

  11. Hofer, B. Backhaus, S., and Timmis, K. N. (1994) The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 144, 9–16.

    Article  PubMed  CAS  Google Scholar 

  12. Erickson, B. D. and Mondello, F. J. (1992) Nucleotide sequencing and transcriptional mapping of genes encoding biphenyl dioxygenase, a multicomponent PCB-degrading enzyme in Pseudomonas strain LB400. J. Bacteriol. 174, 2903–2912.

    PubMed  CAS  Google Scholar 

  13. Hofer, B., Eltis, L. D., Dowling, D. N., and Timmis, K. N. (1993) Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130, 47–55.

    Article  PubMed  CAS  Google Scholar 

  14. Furukawa, K. and Miyazaki, T. (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J. Bacteriol. 166, 392–398.

    PubMed  CAS  Google Scholar 

  15. Taira, K., Hirose, J., Hayashida, S., and Furukawa, K. (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267, 4844–4853.

    PubMed  CAS  Google Scholar 

  16. Kahn, A. and Walia, S. (1989) Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl from Pseudomonas putida OU83. Appl. Environ. Microbiol. 55, 798–805.

    Google Scholar 

  17. Walia, S., Khan, A., and Rosenthal, N. (1990) Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Appl. Environ. Microbiol. 56, 254–259.

    PubMed  CAS  Google Scholar 

  18. Kahn, A. A., Wang, R. F., Nawaz, M. S., and Cerniglia, C. E. (1997) Nucleotide sequence of the genes encoding cis-biphenyl dihydrodiol dehydrogenase (bphB) and the expression of an active recombinant His-tagged bphB gene product from PCB degrading bacterium, Pseudomonas putida OU83. FEMS Microbiol. Lett. 154, 317–324.

    Article  Google Scholar 

  19. Ahmad, D., Masse, R., and Sylvestre, M. (1990) Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene 86, 53–61.

    Article  PubMed  CAS  Google Scholar 

  20. Ahmad, D., Sylvestre, M., and Sondossi, M. (1991) Subcloning of bph genes from Pseudomonas testosteroni B-356 in Pseudomonas putida and Escherichia coli: evidence for dehalogenation during initial attack on chlorobiphenyls. Appl. Environ. Microbiol. 57, 2880–2887.

    PubMed  CAS  Google Scholar 

  21. Sylvestre, M., Sirois, M., Hurtubise, Y., Bergeron, J., Ahmad, D., Shareck, F., et al. (1996) Sequencing of Comamonas testosteroni strain B-356 biphenyl/chlorobiphenyl dioxygenase genes: Evolutionary relationships among Gram-negative bacterial biphenyl dioxygenases. Gene 174, 195–205.

    Article  PubMed  CAS  Google Scholar 

  22. Sharma, A., Chunn, C. D., Rothmel, R. K., and Unterman, R. (1991) Studies on bacterial degradation of polychlorinated biphenyls: optimization of parameters for in vivo enzyme activity. Poster Q48. 91st Gen. Meet Am. Soc. Microbiol., May 5–9, Dallas, TX.

    Google Scholar 

  23. Asturias, J. A., Diaz, E., and Timmis, K. N. (1995) The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenease from Gram-negative bacteria. Gene 156, 11–18.

    Article  PubMed  CAS  Google Scholar 

  24. Yamada, A., Kishi, H., Sugiyama, K., Hatta, T., Nakamura, K. Masai, E., and Fukuda, M. (1998) Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 64, 2006–2012.

    PubMed  CAS  Google Scholar 

  25. Masai, E., Yamada, A., Healy, J. M., Hatta, T., Kimbara, K., Fukuda, M., and Yano, K. (1995) Characterization of biphenyl catabolic genes of Gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61, 2079–2085.

    PubMed  CAS  Google Scholar 

  26. Masai, E., Sugiyama, K., Iwashita, N., Shimizu, S., Hauschild, J. E., Hatta, T., et al. (1997) The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1. Gene 187, 141–149.

    Article  PubMed  CAS  Google Scholar 

  27. Hauschild, J. E., Masai, E., Sugiyama, K., Hatta, T., Kimbara, K., Fukuda, M., and Yano, K. (1996) Identification of an alternative 2,3-dihydroxybiphenyl 1,2-dioxygenase in Rhodococcus sp. strain RHA1 and cloning of the gene. Appl. Environ. Microbiol. 62, 2940–2946.

    PubMed  CAS  Google Scholar 

  28. Kosono, S., Maeda, M., Fuji, F., Arai, H., and Kudo, T. (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol. 63, 3282–3285.

    PubMed  CAS  Google Scholar 

  29. Shimura, M., Mukerjee-Dhar, G., Kimbara, K., Nagato, H., Kiyohara, and Hatta, T. (1999) Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalenes. FEMS Microbiology Letters 178, 87–93.

    Article  PubMed  CAS  Google Scholar 

  30. Bedard, D., Untermann, R., Bopp, L. H., Brennan, M. J., Haberl, M. L., and Johnson, C. (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51, 761–768.

    PubMed  CAS  Google Scholar 

  31. Mondello, F. J., Turcich, M. P., Lobos, J. H., and Erickson, B. D. (1997) Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl. Environ.Microbiol. 63, 3096–3103.

    PubMed  CAS  Google Scholar 

  32. Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., and Yano, K. (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61, 3353–3358.

    PubMed  CAS  Google Scholar 

  33. Peng, X., Egashira, T., Hanashiro, K., Masai, E., Nishikawa, S., Katayama, et al. (1998) Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl. Environ. Microbiol. 64, 2520–2527.

    PubMed  CAS  Google Scholar 

  34. Yadav, J. S., Quensen, J. F., III, Tiedje, J. M., and Reddy, C. A. (1995) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chyrosporium as evidenced by congener-specific analysis. Appl. Environ. Microbiol. 61, 2560–2565.

    PubMed  CAS  Google Scholar 

  35. Erb, R.W. and Wagner-Dobbler, I. (1993) Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol. 59, 4065–4073.

    PubMed  CAS  Google Scholar 

  36. Layton, A. C., Lajoie, C. A., Easter, J. P., Jernigan, R., Sanseverino, J., and Sayler, G. S. (1994) Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils. J. Industr. Microbiol. 13, 392–401.

    Article  CAS  Google Scholar 

  37. Pellizari, V. H., Bezborodnikov, S., Quensen, J. F.,III, and Tiedje, J. M. (1996) Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygnease probes and polychlorinated biphenyl-degrading ability. Appl. Environ. Microbiol. 62, 2053–2058.

    PubMed  CAS  Google Scholar 

  38. Van Dyke, M. I., Lee, H., and Trevors, J. T. (1996) Survival of luxAB marked Alcaligenes eutrophus H850 in PCB-contaminated soil and sediment. J. Chem. Tech. Biotech. 65, 115–122.

    Article  Google Scholar 

  39. Kimura, N., Nishi, A., Goto, M., and Furukawa, K. (1997) Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J. Bacteriol. 179, 3936–3943.

    PubMed  CAS  Google Scholar 

  40. Anderson, L. M. and Young, B. D. (1985) Quantitative filter hybridization. In Nucleic Acid Hybridization: A Practical Approach (Hames, B. D. and Higgins, S. J., eds.), IRL Press Limited, Oxford, England, Chapter 4, pp. 73–111.

    Google Scholar 

  41. Bedard, D., Wagner, R. E., Brennan, M. J., Haberl, M. L., and Brown, J. F., Jr. (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53, 1094–1102.

    PubMed  CAS  Google Scholar 

  42. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Clustal W: improving sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  43. Page, R. D. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Compu. Appl. Biosci. 12, 357–359.

    CAS  Google Scholar 

  44. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  45. Ogram, A., Sayler, G. S., and Barkay, T. (1987) The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7, 57–66.

    Article  CAS  Google Scholar 

  46. Holben, W. E., Jansson, J. K., Chelm, B. K., and Tiedje, J. M. (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54, 703–711.

    PubMed  CAS  Google Scholar 

  47. Tsai, Y.-L. and Olson, B. H. (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57, 1070–1074.

    PubMed  CAS  Google Scholar 

  48. Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P. (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol. 58, 2717–2722.

    PubMed  CAS  Google Scholar 

  49. Jacobsen, C. S. and Rasmussen, O. F. (1992) Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl. Environ. Microbiol. 58, 2458–2462.

    PubMed  CAS  Google Scholar 

  50. Stapleton, R. D., Ripp, S., Jimenez, L. Cheol-Koh, S., Fleming, J. T., Gregory, I. R., and Sayler, G. S. (1998) Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J. Microbiol. Methods. 32, 165–178.

    Article  CAS  Google Scholar 

  51. Stapleton, R. D. (1997) Natural attenuation of petroleum hydrocarbons in ground-water. Ph.D. dissertation. University of Tennessee, Knoxville, USA.

    Google Scholar 

  52. Promega (1992) Technical Manual 16. Madison, Wisconsin. USA.

    Google Scholar 

  53. Applegate, B. M., Matrubutham, U., Sanseverino, J., and Sayler, G. S. (1995) Biodegradation genes as marker genes in microbial ecosystems. Molecular Microbial Ecology Manual 6.1.8, 1–14.

    Google Scholar 

  54. Johnston, W. H., Stapleton, R., and Sayler, G. S. (1996) Direct extraction of microbial DNA from soils and sediments. Molecular Microbial Ecology Manual 1.3.2, 1–9.

    Google Scholar 

  55. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L. (1988) Use of phylogenetically-based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 1079–1084.

    PubMed  CAS  Google Scholar 

  56. Smith, C. L., Econome, J. G., Schutt, A., Klco, S., and Cantor, C. R. (1987) A physical map of the Escherichia coli K12 genome. Science 236, 1448–1453.

    Article  PubMed  CAS  Google Scholar 

  57. Klappenbach, J. A., Dunbar, J. M. and Schmidt, T. M. (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Sanseverino, J., Layton, A.C., Sayler, G.S. (2002). Detection of Polychlorinated Biphenyl-Degrading Organisms in Soil. In: de Muro, M.A., Rapley, R. (eds) Gene Probes. Methods in Molecular Biology, vol 179. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-238-4:193

Download citation

  • DOI: https://doi.org/10.1385/1-59259-238-4:193

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-885-1

  • Online ISBN: 978-1-59259-238-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics