Skip to main content

Ultrasensitive Detection of DNA Damage by the Combination of the Comet and TUNEL Assays

  • Protocol
In Situ Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 203))

  • 949 Accesses

Abstract

The assessment of cellular DNA damage is crucial in many areas of biology including immunology, developmental biology, aging, cancer, and environmental science. A variety of experimental techniques including alkaline sucrose gradient centrifugation, alkaline elution, nucleoid sedimentation, viscoelastic measurements of DNA, alkaline unwinding, and gel electrophoresis (14) have been developed to detect DNA damage in large cell populations. However, these methods can only detect the average amount of DNA damage over millions of cells. These approaches do not reveal the heterogeneity of DNA damage within a sample; some cells may experience extensive damage whereas others may display no damage at all. Moreover, one might want to analyze the amount of DNA damage in variety of cell subpopulations within a sample. In more specialized applications (e.g., a specific target cell undergoing immunologic recognition and destruction) the extent of DNA damage in a particular cell may be required. Furthermore, there are some clinical experiments where the amount of sample is severely limited (e.g., biopsy material) and therefore large-scale assays are impossible. Thus, there are many biological circumstances that require the use of small cell samples. To extract DNA damage information from these samples, techniques that rely upon the evaluation of DNA damage at the level of single cells is required. The single cell gel electrophoresis (SCGE) or “comet” assay is the most widely applied method for the detection of DNA damage in single cells. In this approach damaged DNA in individual cells is electrophoresed away from a nucleus into an agarose gel followed by staining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Freeman S. E., Blackett A. D., Monteleone D. C., Setlow R. B., Sutherland B. M., and Sutherland J. C. (1986) Quantitation of radiation, chemical-, or enzymeinduced single-strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers. Anal. Biochem. 158, 119–129.

    Article  PubMed  CAS  Google Scholar 

  2. Kohn K. W., Erickson L. C., Ewig R. A., and Friedman C. A. (1976) Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15, 4629–4637.

    Article  PubMed  CAS  Google Scholar 

  3. Lipetz P. D., Brash D. E., Joseph L. B., Jewett H. D., Lisle D. R., Lantry L. E., Hart R. W., and Stephens R. E. (1982) Determination of DNA superhelicity and extremelly low levels of strand breaks in low numbers of nonradiolabeled cells by DNA-4′,6-diamino-2-phenylindole fluorescence in nucleoid gradients. Anal. Biochem. 121, 339–348.

    Article  PubMed  CAS  Google Scholar 

  4. Uhlenhopp E. L. (1976) Viscoelastic analysis of high molecular weight, alkali-denatured DNA from mouse 3T3 cells. Biophys. J. 15, 233–238.

    Article  Google Scholar 

  5. Ryberg B., and Johanson K. J. (1978) Estimation of DNA strand breaks in single mammalian cells, in: DNA Repair Mechanisms (Hanawalt P. C., Friedberg E. C., and Fox C. F., eds.) Academic Press, NY, pp. 465–468.

    Google Scholar 

  6. Osstling O., and Johanson K. J. (1984) Microelectrophoretic study of radiation-induced DNA damage in individual mammalian cells. Biochem. Biophys. Res. Comm. 123, 291–298.

    Article  Google Scholar 

  7. Singh N. P. McCoy M. T. Tice R. R. and Schneider E. L. 1988 A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175 184–191

    Google Scholar 

  8. McKelvey-Martin V. J., Green M. H. L., Schmezer P., Pool-Zobel B. L., De Meo M. P., and Collins A. (1993) The single cell electrophoresis assay (comet assay): A European review. Mutation Res. 288, 47–63.

    PubMed  CAS  Google Scholar 

  9. Modak S. P., and Bollum F. J. (1972) Detection and measurement of singlestrand breaks in nuclear DNA in fixed lens sections. Exp. Cell Res. 75, 307–313.

    Article  PubMed  CAS  Google Scholar 

  10. Dawson B. A. and Lough J. (1988) Immunocytochemical localization of transient DNA strand breaks in differentiating myotubes using in situ nick-translation. Develop. Biol. 127, 362–367.

    Article  PubMed  CAS  Google Scholar 

  11. Li X., Traganos F., Melamed M. R., and Darzynkiewicz Z. (1995) Single-step procedure for labeling DNA strand breaks with fluorescein-or BODIPY-conjugated deoxynucleotides: Detection of apoptosis and bromodeoxyuridine incorporation. Cytometry 20, 172–180.

    Article  PubMed  CAS  Google Scholar 

  12. Gavrieli Y., Sherman Y., and Ben-Sasson S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  13. Kindzelskii A. L. and Petty H. R. (1999) Ultrasensitive detection of hydrogen peroxide-mediated DNA damage after single cell gel electrophoresis using occultation microscopy and TUNEL labeling. Mutation Res. 426, 11–22.

    PubMed  CAS  Google Scholar 

  14. Kindzelskii A. L. and Petty H. R. (1999) Early membrane rupture events during neutrophil-mediated antibody-dependent tumor cell cytolysis. J. Immunol. 162, 3188–3192.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Kindzelskii, A.L., Petty, H.R. (2002). Ultrasensitive Detection of DNA Damage by the Combination of the Comet and TUNEL Assays. In: Didenko, V.V. (eds) In Situ Detection of DNA Damage. Methods in Molecular Biology, vol 203. Humana Press. https://doi.org/10.1385/1-59259-179-5:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-179-5:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-952-0

  • Online ISBN: 978-1-59259-179-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics