Skip to main content

Searching Sequence Databases via De Novo Peptide Sequencing by Tandem Mass Spectrometry

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 146))

Abstract

The initial stages of tandem mass spectral data interpretation for a pro-teomics project usually involve looking for exact matches between the query spectrum and theoretical fragmentation data derived from database sequences (13). A number of programs are available that use the observed peptide mass as a filter for identifying portions of database sequences with the same calculated mass prior to evaluating the congruency between the database sequence candidates and the tandem mass spectrum (47). These programs generally fall short when analyzing peptides whose sequences differ in a manner that alters its mass compared with the database sequence (see Note 1 ). For example, a single conservative substitution of isoleucine for valine is sufficient to thwart algorithms that rely on peptide mass prefilters. We commonly obtain high-quality tandem mass spectral data of peptides for which no exact database match can be made, and the question remains whether these nonmatching spectra are due to novel sequences, or are a result of less interesting possibilities such as interspecies variation, database sequence errors, or unexpected pro-teolytic cleavages.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Humphery-Smith I., Cordwell S. J., and Blackstock W. P. (1997) Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18, 1217–1242.

    Article  PubMed  CAS  Google Scholar 

  2. Pennington S. R., Wilkins M. R., Hochstrasser D. F., and Dunn M. J. (1997) Proteome analysis: from protein characterization to biological function. Trends Cell Biol. 7, 168–173.

    Article  PubMed  CAS  Google Scholar 

  3. Roepstorff P. (1997) Mass spectrometry in protein studies from genome to function. Curr. Opin. Biotechnol. 8, 6–13.

    Article  PubMed  CAS  Google Scholar 

  4. Mann M. and Wilm M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399.

    Article  PubMed  CAS  Google Scholar 

  5. Eng J. K., McCormack A. L., and Yates III J. R. (1994) An approach to correlate tandem mass spectra data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.

    Article  CAS  Google Scholar 

  6. Clauser K. R., Baker P., and Burlingame A. L., in The 44th ASMS Conference on Mass Spectrometry and Allied Topics, Portland, OR, 1996, p. 365.

    Google Scholar 

  7. Fenyo D., Qin J., and Chait B. T. (1998) Protein indentification using mass spectrometric information. Electrophoresis 19, 998–1005.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor J. A. and Johnson R. S. (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1067–1075.

    Article  PubMed  CAS  Google Scholar 

  9. Bartels C. (1990) Fast algorithm for peptide sequencing by mass spectroscopy. Biomed. Environ. Mass Spectrom. 19, 363–368.

    Article  CAS  Google Scholar 

  10. Fernandez-de-Cossjo J., Gonzalez J., and Besada V. (1995) A computer program to aid the sequencing of peptides in collision-activated decomposition experiments. CABIOS 11, 427–434.

    Google Scholar 

  11. Pearson W. R. and Lipman D. J. (1988) Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA 85, 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  12. Pearson W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183, 63–98.

    Article  PubMed  CAS  Google Scholar 

  13. Wilm M. and Mann M. (1996) Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Papayannopoulos I. A. (1995) The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev. 14, 49–73.

    Article  CAS  Google Scholar 

  15. Hunt D. F., Yates J. R. I., Shabanowitz J., Winston S., and Hauer C. R. (1986) Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 83, 6233–6237.

    Article  PubMed  CAS  Google Scholar 

  16. Tang X. and Boyd R. K. (1992) An investigation of fragmentation mechanisms of doubly protonated tryptic peptides. Rapid Commun. Mass Spectrom. 6, 651–657.

    Article  PubMed  CAS  Google Scholar 

  17. Korner R., Wilm M., Morand K., Schubert M., and Mann M. (1996) Nano electrospray combined with a quadrupole ion trap for the analysis of peptides and protein digests. J. Am. Soc. Mass Spectrom. 7, 150–156.

    Article  Google Scholar 

  18. Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  19. Henikoff S. and Henikoff J. G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10,915–10,919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Johnson, R.S., Alex Taylor, J. (2000). Searching Sequence Databases via De Novo Peptide Sequencing by Tandem Mass Spectrometry. In: Chapman, J.R. (eds) Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology™, vol 146. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-045-4:41

Download citation

  • DOI: https://doi.org/10.1385/1-59259-045-4:41

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-609-3

  • Online ISBN: 978-1-59259-045-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics