Skip to main content

Kinetic Analysis of Enzymatic and Nonenzymatic Degradation of Peptides by MALDI-TOFMS

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 146))

Abstract

Currently used methods for investigating kinetics of peptide degradation such as refractive index monitoring, radioimmunoassay (RIA), high-performance liquid chromatography (HPLC), or capillary electrophoresis (CE) are time consuming, need large amounts of substrate, and are often too insensitive. Moreover, as in the case of RIA, HPLC, and CE, it is often impossible to interpret the observed results with confidence in the integrity of the analyte. To circumvent such obstacles, we found matrix-assisted laser desorption/ionization (MALDI) used with time-of-flight mass spectrometry (TOFMS) not only useful for qualitative analysis of reaction pathways but also for quantification. In the following chapter, we give two examples of kinetic reaction course evaluation, one non-enzymatic and one enzymatic.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schmidt J., Wermann M., Rosche F., and Demuth H.-U. (1996) The use of MALDI-TOF mass spectrometry in quantification of the stability of prolyl endopeptidase inhibitors. Protein Pep. Lett., 3, 385–392.

    CAS  Google Scholar 

  2. Pauly R., Rosche F., Wermann M., McIntosh C. H. S., Pederson R. A., and Demuth H. U. (1996) Investigation of glucose-dependent insulinotropicpolypeptide (1–42) and glucagon-like peptide-1–(7–36) degradation in vitro bydipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-timeof flight mass spectrometry: a novel kinetic approach. J. Biol. Chem. 271, 23,222–23,229.

    Article  PubMed  CAS  Google Scholar 

  3. Jespersen S., Niessen W. M. A., Tjaden U. R., and van der Greef J. (1995) Quantitative bioanalysis using matrix-assisted laser desorption/ionization massspectrometry. J. Mass Spectrom. 30, 357–364.

    Article  CAS  Google Scholar 

  4. Wu J. Y., Chatman K., Harris K., and Siudzak G. (1997) An automated MALDI mass spectrometry approach for optimizing cyclosporin extraction and quantitation. Anal. Chem. 69, 3767–3771.

    Article  PubMed  CAS  Google Scholar 

  5. Wilkinson W. R., Gusev A. I., Proctor A., Houalla M., and Hercules D. M.(1997) Selection of internal standards for quantitative analysis by matrix-assistedlaser desorption-ionization (MALDI) time-of-flight mass spectrometry. Fresenius J. Anal. Chem. 357, 241–248.

    Article  CAS  Google Scholar 

  6. Yaron A. and Naider F. (1993) Proline-dependent structural and biological proprties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol. 28, 31–81.

    Article  PubMed  CAS  Google Scholar 

  7. Steinmetzer T., Silberring J., Mrestani-Klaus C., Fittkau S., Barth A., and Demuth H.-U. (1993) Ammonium methyl ketones as substrate analog inhibitorsof proline-specific peptidases.J. Enzym. Inhib. 7, 77–85.

    Article  PubMed  CAS  Google Scholar 

  8. Demuth H.-U. and Heins J. (1995) On the catalytic mechanism of dipeptidylpeptidase IV, in Dipeptidyl Peptidase IV (CD26) in Metabolism and the ImmuneResponse (Fleischer B., ed.), R. G. Landes, Georgetown, pp. 1–37.

    Google Scholar 

  9. Mentlein R., Gallwitz B., and Schmidt W. E. (1993) Dipeptidyl-peptidase IV hydrolyzes gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide,peptide histidine methionine and is responsible for their degradation in humanserum. Eur. J. Biochem. 214, 829–835.

    Article  PubMed  CAS  Google Scholar 

  10. Kieffer T. J., McIntosh C. H. S., and Pederson R. A. (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 invitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136, 3585–3596.

    Article  PubMed  CAS  Google Scholar 

  11. Brown J. C. (1994) Enteroinsular axis, in Gut Peptides (Walsh J. H. and Dochray G. J., eds.), Raven Press, New York, pp. 765–784.

    Google Scholar 

  12. Schmidt W. E., Siegel E. G., Ebert R., and Creutzfeldt W. (1986) N-terminal tyrosine-alanine is required for the insulin-releasing activity of glucose-dependent insulinotropic polypeptide (GIP). Eur. J. Clin. Invest. 16, A9.

    Google Scholar 

  13. Brown J. C., Dahl M., McIntosh C. H. S., Otte S. C., and Pederson R. A. (1981) Actions of GIP. Peptides 2(Suppl. 2), 241–245.

    Article  PubMed  CAS  Google Scholar 

  14. Deacon C. F., Johnsen A. H., and Holst J. J. (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957.

    Article  PubMed  CAS  Google Scholar 

  15. Pederson R. A., White H. A., Schlenzig D., Pauly R. P., McIntosh C. H. S., and Demuth H. U. (1998) Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes 47, 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  16. Crawford C., Mason R. W., Wikström P., and Shaw E. (1988) The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin. B. Biochem. J. 253, 751–758.

    PubMed  CAS  Google Scholar 

  17. Demuth H.-U. (1990) Recent developments in the irreversible inhibition of serine and cysteine proteases. J. Enzym. Inhib. 3, 249–278.

    Article  PubMed  CAS  Google Scholar 

  18. Schön E., Born I., Demuth H.-U., Faust J., Neubert K., Steinmetzer T., et al. (1991) Dipeptidyl peptidase IV: Einfluβ von DP IV Effektoren auf die Enzymaktivität und die Proliferation humaner Lymphozyten. Biol. Chem Hoppe-Seyler 372, 305–311.

    Article  PubMed  Google Scholar 

  19. Wolf B., Fischer G., and Barth A. (1978) Kinetics of dipeptidyl peptidase IV. Acta Biol. Med. Germ. 37, 409–420.

    PubMed  CAS  Google Scholar 

  20. Wünsch E. (1974) in Synthesis of Peptides, Houben-Weyl, vol. 15/I, Methods in Organic Chemistry (Müller E., ed.), Georg-Thieme-Verlag, Stuttgart.

    Google Scholar 

  21. Morrison J. and Walsh C. T. (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. 61, 201–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Rosche, F. et al. (2000). Kinetic Analysis of Enzymatic and Nonenzymatic Degradation of Peptides by MALDI-TOFMS. In: Chapman, J.R. (eds) Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology™, vol 146. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-045-4:251

Download citation

  • DOI: https://doi.org/10.1385/1-59259-045-4:251

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-609-3

  • Online ISBN: 978-1-59259-045-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics