Skip to main content

Multiple and Subsequent MALDI-MS on-target Chemical Reactions for the Characterization of Disulfide Bonds and Primary Structures of Proteins

  • Protocol
Book cover Mass Spectrometry of Proteins and Peptides

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 146))

  • 1890 Accesses

Abstract

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analyses have been successfully applied in a vast number of examples for precise molecular mass determinations of biomacromolecules such as proteins. In combination with chemical and/or proteolytic derivatization and degradation reactions, MALDI-MS enables the analysis of the primary structural details of proteins such as posttranslational modifications. A well-established methodology for the investigation of partial peptides of proteins is the combination of proteolytic degradation with mass spectrometry (13). Hydrolytic cleavage is carried out under conditions such that particular peptide bonds are cleaved with a highly specific protease, e.g., trypsin, hence creating a specific idpeptide map.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glocker M. O., Kalkum M., Yamamoto R., and Schreurs J. (1996) Selective biochemical modification of functional residues in recombinant human macrophage colony-stimulating factor β (rhM-CSFβ): identification by mass apectrometry. Biochemistry 35, 14,625–14,633.

    Article  PubMed  CAS  Google Scholar 

  2. Denzinger T., Przybylski M., Savoca R., and Sonderegger P. (1998) Mass spectrometric characterization of primary structure, sequence heterogeity, and intramolecular disulfide loops of the cell adhesion protein axonin-1 from chicken. Eur. Mass Spectrom. 3, 379–389.

    Article  Google Scholar 

  3. Bures E. J., Hui J. O., Young Y., Chow D. T., Katta V., Rohde M. F., et al. (1998) Determination of disulfide structure in Agouti-Related (AGRP) by stepwise reduction and alkylation. Biochemistry 37, 12,172–12,177.

    Article  PubMed  CAS  Google Scholar 

  4. Glocker M. O., Bauer S. H. J., Kast J., Volz J., and Przybylski M. (1996) Characterization of specific noncovalent protein complexes by UV matrix-assisted laser desorption ionization mass spectrometry. J. Mass Spectrom. 31, 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  5. Glocker M. O., Jetschke M. R., Bauer S. H. J., and Przybylski M. (1998) Characterization of tertiary structures and specific noncovalent complexes of proteins by UV-matrix assisted laser-desorption/ionization mass spectrometry, in New Methods for the Study of Biomolecular Complexes (Ens W., Standing K. G., and Chernushevich I. V., eds.), Kluwer Academic Dordrecht, pp. 193–208.

    Google Scholar 

  6. Wu J., Gage D. and Watson J. T. (1996) A strategy to locate cysteine residues in proteins by specific chemical cleavage followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 235, 161–17

    Article  PubMed  CAS  Google Scholar 

  7. Kussmann M., Nordhoff E., Rahbek-Nielsen H., Haebel S., Rossel-Larsen M., Jakobsen L., et al. (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom. 32, 593–601.

    Article  CAS  Google Scholar 

  8. Spiess C., Happersberger H. P., Glocker M. O., Spiess E., Rippe K., and Ehrmann M. (1997) Biochemical characterization and mass spectrometric disulfide bond mapping of periplasmic a-amylase MalS of Escherichia coli. J. Biol. Chem. 272, 22,125–22,133.

    Article  PubMed  CAS  Google Scholar 

  9. Happersberger H. P., Przybylski M., and Glocker M. O. (1998) Selective chemical bridging of bis-cysteinyl residues by arsonous acid derivatives as an approach to the characterization of protein tertiary structures and folding pathways by mass spectrometry. Anal. Biochem. 264, 237–250.

    Article  PubMed  CAS  Google Scholar 

  10. Happersberger H. P., Stapleton J., Cowgill C., and Glocker M. O. (1998) Characterization of the in vitro folding pathway of Recombinant Human macrophagecolony stimulating factor (rhM-CSF) by bis-cysteinyl modification and mass spectrometry. Proteins Struct. Funct. Genet., Suppl.2, 50–62.

    Article  PubMed  Google Scholar 

  11. Bantscheff M., Weiss V., and Glocker M. (1998) Identification of linker regions and domain borders of the response regulator protein NtrC from E. coli by limited proteolysis, in-gel digestion, and mass spectrometry. Biochemistry 38, 11,012–11,020.

    Article  Google Scholar 

  12. Wilm M. and Mann M. (1996) Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Winston R. L. and Fitzgerald M. C. (1998) Concentration and desalting of protein samples for mass spectrometry analysis. Anal. Biochem. 262, 83–85.

    Article  PubMed  CAS  Google Scholar 

  14. Gevaert K., Demol H., Sklyarova T., Vandekerckhove J., and Houthaeve T. (1998) A peptide concentrating and purification method for protein characterization in the sub-picomole range using matrix assisted laser desorption/ionization-postsource decay (MALDI-PSD) sequencing. Electrophoresis, 19, 909–917.

    Article  PubMed  CAS  Google Scholar 

  15. Glocker M. O., Arbogast B., and Deinzer M. L. (1995) Characterization of disulfide linkages and disulfide bond scrambling in recombinant human macrophage colony stimulating factor by fast-atom bombardment mass spectrometry of enzymatic digests. J. Am. Soc. Mass Spectrom. 6, 638–643.

    CAS  Google Scholar 

  16. Creighton T. (1995) Disulfide-coupled protein-folding pathways. Phil. Trans. R. Soc.Lond.B, 348, 5–10.

    Article  CAS  Google Scholar 

  17. Schütte C. G., LemM T., Glombitza G. J., and Sandhoff K. (1998) Complete localization of disulfide bonds in GM2 activator protein. Protein Sci. 7, 1039–1045.

    Article  PubMed  Google Scholar 

  18. Glocker M. O., Arbogast B., Schreurs J., and Deinzer M. L. (1993) Assignment of the inter-and intramolecular disulfide linkages in recombinant human macrophage colony stimulating factor using fast atom bombardment mass spectrometry. Biochemistry, 32, 482–488.

    Article  PubMed  CAS  Google Scholar 

  19. Sorensen H. H., Thomsen J., Bayne S., Hojrup P., and Roepstorff P. (1990) Strategies for determination of disulfide bridges in proteins using plasma desorption mass-spectrometry. Biomed. Environ. Mass Spectrom. 19, 713–720.

    Article  PubMed  CAS  Google Scholar 

  20. Yazdanparast R., Andrews P. C., Smith D. L., and Dixon J. E. (1987) Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry. J. Biol. Chem. 262, 2507–2513.

    PubMed  CAS  Google Scholar 

  21. Sun Y., Bauer M. D., Keough T. W., and Lacey M. P. (1996) Disulfide bond location in proteins, in Protein and Peptide Analysis by Mass Spectrometry (Chapman J. R., ed.), Humana Totowa, NJ, pp. 185–210.

    Chapter  Google Scholar 

  22. Carr S. A., Bean M. F., Hemling M. E., and Roberts G. D. (1990) Integration of mass spectrometry in biopharmaceutical research, in Biology and Mass Spectrometry (Burlingame A. L. and McCloskey J. A. eds.), Elsevier Science Amsterdam, pp. 621–652.

    Google Scholar 

  23. Smith D. L. and Zhou Z. (1990) Strategies for locating disulfide bonds in proteins. Methods Enzymol. 193, 374–389.

    Article  PubMed  CAS  Google Scholar 

  24. Morris H. R. and Greer F. M. (1988) Mass spectrometry of matural and recombinant proteins and glycoproteins. Trends Biotechnol. 6, 140–147.

    Article  CAS  Google Scholar 

  25. Gehrig P. M. and Biemann K. (1996) Assignment of the disulfide bonds in napain, a seed storage protein from Brassica napus, using matrix-assisted laser desorption ionization mass spectrometry. Peptide Res. 9, 308–314.

    CAS  Google Scholar 

  26. Zhou J., Ens W., Poppe-Schriemer N., Standing K. G., and Westmore J. B. (1993) Cleavage of interchain disulfide bonds following matrix-assisted laser desorption. Int. J. Mass Spectrom. Ion Processes 126, 115–122.

    Article  CAS  Google Scholar 

  27. Crimmins D. L., Saylor M., Rush J., and Thoma R. S. (1995) Facile in situ matrix-assisted laser desorption ionization-mass spectrometry analysis and assignment of disulfide pairing in heteropeptide molecules.Anal. Biochem. 226, 355–361.

    Article  PubMed  CAS  Google Scholar 

  28. Patterson S. D. and Katta V. (1994) Prompt fragmentation of disulfide-linked peptides during matrix-assisted laser desorption ionization mass spectrometry. Anal. Chem. 66, 3727–3732.

    Article  PubMed  CAS  Google Scholar 

  29. Volkin D. B., Mach H., and Middaugh C. R. (1995) Degradative covalent reactions important to protein stability, in Protein Stability and Folding (Shirley B. A., ed.), Humana Totowa, NJ, pp. 35–63.

    Chapter  Google Scholar 

  30. Creighton T. E., ed. (1993) Proteins, Structures and Molecular Properties. W. H. Freeman New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Peter Happersberger, H., Bantscheff, M., Barbirz, S., Glocker, M.O. (2000). Multiple and Subsequent MALDI-MS on-target Chemical Reactions for the Characterization of Disulfide Bonds and Primary Structures of Proteins. In: Chapman, J.R. (eds) Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology™, vol 146. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-045-4:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-045-4:167

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-609-3

  • Online ISBN: 978-1-59259-045-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics