Skip to main content

Receptor biosensors based on optical detection

  • Protocol
Affinity Biosensors

Part of the book series: Methods in Biotechnology ((MIBT,volume 7))

  • 651 Accesses

Abstract

Neurotransmitter and hormone receptors serve as biosensors for specific chemical signals ranging from low-mol-wt compounds to complex polypeptides. On binding of the target transmitter or hormone, signal amplification and transduction in biologic systems occurs via a variety of mechanisms, ranging from depolarization of neural membrane, G protein-linked synthesis of second messengers, to activation or inhibition of expression of target genes. The combination of these sensitive and specific sensing receptor proteins with electrochemical, optical, and acoustic technologies to form analytical devices is an attractive concept. These receptor-based biosensors could potentially find applications in the medical, diagnostics, food, military, and environmental areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers, K. R., Valdes, J. J., and Eldefrawi, M E. (1989) Acetylcholine receptor fiber-optic evanescent fluorosensor Anal. Biochem. 182, 353–359.

    Article  PubMed  CAS  Google Scholar 

  2. Ward, L. D., Hewlett, G. J., Hammacher, A., Weinstock, J., Yasukawa, K., Simpson, R. J., and Winzor, D. J. (1995) Use of a biosensor with surface plasmon resonance detection for the determination of binding constants: measurement of interleukm-6 binding to the soluble interleukin-6 receptor. Biochemistry 34, 2901–2907.

    Article  PubMed  CAS  Google Scholar 

  3. Raghavan M., Wang, Y. P., and Bjorkman, P. J. (1995) Effects of receptor dimerization on the interaction between the class 1 major histocompatibility complex-related FC receptor and IgG. Proc Natl. Acad Sci USA 94, 11,200–11,204

    Article  Google Scholar 

  4. Buch, R. M. and Rechnitz, G. A. (1989) Intact chemoreceptor-based biosensors: responses and analytical limits. Biosensors 4, 215–230.

    Article  CAS  Google Scholar 

  5. Eray, M., Dogan, N. S., Reiken, S. R., Sutisna, H., Vanwei, B. J., Koch, A. R., Moffett, D. F., Silber, M., and Davis, W. C. (1995) A highly stable and selective biosensor using modified nicotinic acetylcholine receptor (nAChR). Biosystems 35, 183–188.

    Article  PubMed  CAS  Google Scholar 

  6. Nikolelis, D. P., Brennan, J. D., Brown, R. S., McGibbon, G., and Krull, U. J. (1991) Ion permeability through bilayer lipid membranes for biosensor development: control by chemical modification of interfacial regions between phase domains Analyst 116, 1221–1226.

    Article  PubMed  CAS  Google Scholar 

  7. Taylor, R. F., Marenchic, I. G., and Cook, E. J. (1988) An acetylcholine receptor-based biosensor for the detection of chohnergic agents. Anal. Chim Acta 213, 131–138.

    Article  CAS  Google Scholar 

  8. Rogers, K. R., Valdes, J. J., and Eldefrawi, M. E. (1991) Effects of receptor concentration, media pH and storage on the nicotinic receptor-transmitted signal in a fiber-optic biosensor. Biosens. Bioelectron. 6, 1–8

    Article  PubMed  CAS  Google Scholar 

  9. Rogers, K. R., Valdes, J J., Menking, D., Thompson, R., and Eldefrawi M. E (1991) Pharmacologic specificity of an acetylcholine receptor fiber-optic biosensor. Biosens. Bioelectron. 6, 507–516.

    Article  PubMed  CAS  Google Scholar 

  10. Eldefrawi, M. E., and Eldefrawi, A. T. (1973) Purification and molecular properties of the acetylcholine receptor from torpedo electroplax. Arch. Biochem Biophys. 159, 362–373.

    Article  PubMed  CAS  Google Scholar 

  11. Kohanski, R. A., Andrews, J. P., Wins, P., Eldefrawi, M E., and Hess, G P (1977) A simple quantitative assay of 125i-bungarotoxin binding to soluble and membrane-bound acetylcholine receptor protein. Anal. Biochem 80, 531–539.

    Article  PubMed  CAS  Google Scholar 

  12. March, S. C, Parikh, I., and Cuatrecasas, P. (1974) A simplified method for cyanogen bromide activation of agarose for affinity chromatography Anal. Biochem. 60, 149–152.

    Article  PubMed  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R J. (1951) Protein measurement with folin phenol reagent. J. Bwl Chem. 193, 265–275.

    CAS  Google Scholar 

  14. Rogers, K. R., Fernando, J. C, Thompson, R. J., Valdes, J J., and Eldefrawi, M. E. (1992) Detection of nicotinic receptor ligands with a light addressable potentiometric sensor. Anal Biochem. 202, 111–116.

    Article  PubMed  CAS  Google Scholar 

  15. Conti-Tronconi, B., Tzartos, S., and Lindstrom, J (1981) Monoclonal antibodies probes of acetylcholine receptor structure 2. Binding to native receptor. Biochemistry 20, 2181–2191.

    Article  PubMed  CAS  Google Scholar 

  16. Bhatia, S. K, Shriver-Lake, L C, Prior, K. J., Georges, J. H., Calvert, J. M., Bredehorst, R., and Ligler, F. S. (1989) Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal Biochem 178, 408–413.

    Article  PubMed  CAS  Google Scholar 

  17. Alarie, J. and Sepaniak, M. (1990) Evaluation of antibody immobilization techniques for fiber optic-based fluoroimmunosensing. Anal Chim. Acta 229, 169–176.

    Article  CAS  Google Scholar 

  18. Devine, P J., Anis, N. A., Wright, J., Kim, S., Eldefrawi, A T., and Eldefrawi, M E. (1995) A fiber optic cocaine biosensor. Anal. Biochem 227, 216–224.

    Article  PubMed  CAS  Google Scholar 

  19. Colbert, D. L., Gallacher, G., and Mainwanng-Burton, R. W. (1985) Single reagent polarization fluoroimmunoassay for amphetamine in urine. Clin. Chem 31, 1193–1195.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rogers, K.R., Eldefrawi, M.E. (1998). Receptor biosensors based on optical detection. In: Rogers, K.R., Mulchandani, A. (eds) Affinity Biosensors. Methods in Biotechnology, vol 7. Humana Press. https://doi.org/10.1385/0-89603-539-5:135

Download citation

  • DOI: https://doi.org/10.1385/0-89603-539-5:135

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-539-3

  • Online ISBN: 978-1-59259-485-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics