Skip to main content

DNase I Footprinting

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 90))

Abstract

Footprinting provides a simple, quick, and reasonably inexpensive method for assessing the sequence specific interaction of ligands with DNA. Although the technique was developed in 1978 for studying the interaction of DNA-binding proteins with then target sites (1), it has proved invaluable for determining the sequence specificity of many small ligands

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Galas D. J. and Schmitz A. (1978) DNAase footprinting—simple method for detection of protein-DNA binding specificity Nucleic Acids Res 5, 3157–3170

    Article  CAS  Google Scholar 

  2. Lane M. J., Dabrowrak J. C., and Vournakis J. N. (1983) Sequence specificity of actinomycin D and netropsin binding to pBR322 analysed by protection from DNAase I. Proc Natl Acad Sci USA 80, 3260–3264

    Article  CAS  Google Scholar 

  3. Scamrov A. V. and Beabealashvilh R. Sh. (1983) Binding of actinomycin D to DNA revealed by DNAase I footprinting. FEBS Lett 164, 97–101.

    Article  CAS  Google Scholar 

  4. Fox K. R. and Waring M. J. (1984) DNA structural variations produced by actinomycin and distainycin as revealed by DNAase I footprinting Nucleic Acids Res 12, 9271–9285

    Article  CAS  Google Scholar 

  5. Fox K. R. and Howarth N. R. (1985) Investigations into the sequence-selective binding of mithramycin and related ligands to DNA Nucleic Acids Res 13, 8695–8714

    Article  CAS  Google Scholar 

  6. Low C. M. L., Drew H. R., and Waring M. J. (1984) Sequence-specific binding of echinomycin to DNA. evidence for conformational changes affecting flanking sequences. Nucleic Acids Res 12, 4865–4879

    Article  CAS  Google Scholar 

  7. Low C. M. L., Olsen R. K., and Waring M. J. (1984) Sequence preferences in the binding to DNA of triosim A and TANDEM as reported by DNase I footprinting. FEBS Lett 176, 414–419.

    Article  CAS  Google Scholar 

  8. Chaires J. B., Fox K. R., Herrera J. E., Britt M., and Waring M. J. (1987) Site and sequence specificity of the daunomycin-DNA interaction Biochemistry 26, 8227–8236

    Article  CAS  Google Scholar 

  9. Chanes J. B., Herrera J. E., and Waring M. J. (1990) Preferential binding of daunomycm to 5′(A/T)CG and 5′(A/T)GC sequences revealed by footprinting titration experiments Biochemistry 29, 6145–6153

    Article  Google Scholar 

  10. Fox K. R. and Waring M. J. (1986) Nucleotide sequence binding preferences of nogalamycin investigated by DNase I footprinting. Biochemistry 25, 4349–4356

    Article  CAS  Google Scholar 

  11. Abu-Daya A., Brown P. M., and Fox K. R. (1995) DNA sequence preferences of several AT-selective minor groove binding ligands Nucleic Acids Res 23, 3385–3392

    Article  CAS  Google Scholar 

  12. Cooney M., Czernuszewicz G., Pastel E. H., Flint S. J., and Hogan M. E. (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro Science 241, 456–459

    Article  CAS  Google Scholar 

  13. Cheng A-J. and van Dyke M. W. (1994) Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purme-pyrimidme triple-helix formation Nucleic Acids Res 22, 4742–4747

    Article  CAS  Google Scholar 

  14. Fox K. R. and Waring M. J. (1987) The use of micrococcal nuclease as a probe for drug-binding sites on DNA Biochim Biophys Acta 909, 145–155

    Article  CAS  Google Scholar 

  15. Cons B. M. G. and Fox K. R. (1990) The GC-selective ligand mithramycm alters the structure of (AT), sequences flanking its binding sites FEBS Lett 264, 100–104

    Article  CAS  Google Scholar 

  16. Stgman D. S. (1990) Chemical nucleases. Biochemistry 29, 9097–9105

    Article  Google Scholar 

  17. Spassky A. and Sigamn D. S. (1985) Nuclease activity of 1,l0 phenanthrolmecopperion. conformational analysis and footprinting of the lac operon Biochemistry 24, 8050–8056.

    Article  CAS  Google Scholar 

  18. Van Dyke M. W., Hertzberg R. P., and Dervan P. B. (1982) Map of distamycin, netropsin and actinomycin binding sites on heterogeneous DNA DNA cleavage inhibition patterns with methidiumpropyl-EDTA-Fe(II). Proc Natl Acad Sci USA 79, 5470–5474

    Article  Google Scholar 

  19. Van Dyke M. W. and Dervan P. B. (1983) Chromomycin, mithramycm and ohvomycin binding sites on heterogeneous deoxyribonucleic acid Footprinting with (methidiumpropyl-EDTA)Iron(II) Biochemistry 22, 2373–2377

    Article  Google Scholar 

  20. Hertzberg J. P. and Dervan P. B. (1984) Cleavage of DNA with methidiumpropyl-EDTA-Iron(I1) reaction conditions and product analyses Biochemistry 23, 3934–3945

    Article  CAS  Google Scholar 

  21. Van Dyke M. W. and Dervan P. B. (1983) Methidiumpropyl-EDTA.Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA Nucleic Acids Res 10, 5555–5567

    Article  Google Scholar 

  22. Nielsen P. E., Jeppesen C., and Buchardt O. (1988) Uranyl salts as photochemical agents for cleavage of DNA and probing of protein DNA contacts FEBS Lett 235, 22–124.

    Article  Google Scholar 

  23. Nielsen P. E., Hiort C., Sonmchsen S. H., Buchardt O., Dahl O., and Norden B. (1993) DNA binding and photocleavage by uranyl(VI)(UO2 2+) salts J Am Chem Soc 114, 4967–4975

    Article  Google Scholar 

  24. Cons B. M. G. and Fox K. R. (1989) High Resolution hydroxyl radical footprinting of the binding of mithramycin and related antibiotics to DNA Nucleic Acids Res 17, 5447–5459

    Article  CAS  Google Scholar 

  25. Churchill M. E. A., Hayes J. J., and Tullms T. D. (1990) Detection of drug binding to DNA by hydroxyl radical footprinting Relationship of distainycin binding sites to DNA structure and positioned nucleosomes on 5s RNA genes of Xenopus Biochemistry 29, 6043–6050.

    Article  CAS  Google Scholar 

  26. Portugal J. and Waring M. J. (1987) Hydroxyl radical footprinting of the sequence-selective binding of netropsin and distamycin to DNA. FEBS Lett 225, 195–200

    Article  CAS  Google Scholar 

  27. Drew H. R. and Travers A. A. (1984) DNA structural variations in the E colityr T promoter. Cell 37, 491–502

    Article  CAS  Google Scholar 

  28. Drew H. R. (1984) Structural specificrues of five commonly used DNA nucleases J Mol Biol 176, 535–557

    Article  CAS  Google Scholar 

  29. Waterloh K. and Fox K. R. (1991) The effects of actinomycin on the structure of dAn dTn and (dA-dT)n regions surrounding its GC binding site: a footprinting study J Biol Chem. 266, 6381–6388.

    CAS  Google Scholar 

  30. Waterloh K. and Fox K. R. (1991) Interaction of echinomycin with An Tn and (AT)n regions flanking its CG bINding site Nucleic Acids Res 19, 6719–6724

    Article  CAS  Google Scholar 

  31. Laskowskr M. (1971) DeoxyrlbonucleaseI, in The Enzymes, vol. 4 (Boyer P D, ed), Academice London, pp 289–311.

    Google Scholar 

  32. Kunitz M. (1950) Crystallme deoxyribonuclease I isolation and general properties spectrophotometric method for the measurement of deoxyribonuclease activity. J Gen Physiol 33, 349–369

    Article  CAS  Google Scholar 

  33. Price P. A. (1975) The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease J Biol Chem 250, 1981–1986

    CAS  Google Scholar 

  34. Lomonossoff G. P., Butler P. J. G., and Klug A. (1981) Sequence-dependent variation in the conformation of DNA. J Mol Biol 149, 745–760.

    Article  CAS  Google Scholar 

  35. Hogan M. E., Roberson M. W., and Austin R. H. (1989) DNA flexibility variation may dominate DNase I cleavage Proc Natl Acad Sci USA 86, 9273–9277

    Article  CAS  Google Scholar 

  36. Brukner I., Jurukovski V., and Savic A. (1990) Sequence-dependent structural variations of DNA revealed by DNase I. Nucleic Acids Res 18, 89l–894

    Article  Google Scholar 

  37. Suck D., Oefner C., and Kabasch W. (1984) Three-dimensional structure of bovine pancreatic DNAase I at 2.5A resolution. EMBO J 3, 2423–2430.

    CAS  Google Scholar 

  38. Suck D. and Oefner C. (1986) Structure of DNaseI at 2Å resolution suggests a mechanism for binding to and cutting DNA Nature 321, 620–625.

    Article  CAS  Google Scholar 

  39. Oefner C. and Suck D. (1986) Crystallographic refinement and structure of DNAase 1 at 2A resolution. J Mol Biol. 192, 605–632.

    Article  CAS  Google Scholar 

  40. Suck D., Lahm A., and Oefner C. (1988) Structure refined to 2A of anicked octanulceotide complex with DNAase I Nature 332, 464–468

    Article  CAS  Google Scholar 

  41. Weston S. A., Lahm A., and Suck D. (1992) X-ray structure of the DNase I-d(GGTATACC)2 complex at 2 3k resolution. J Mol Biol 226, 1237–1256

    Article  CAS  Google Scholar 

  42. Lahm A. and Suck D. (1991) DNase I-induced DNA conformation. 2A structure of a DNase I-octamer complex J Mol Biol 221, 645–667

    Article  Google Scholar 

  43. Herrera J. E. and Chaires J. B. (1994) Characterization of preferred Deoxyribo-nuclease I cleavage sites J Mol Biol 236, 405–411

    Article  CAS  Google Scholar 

  44. Bailly C., Donker I. O., Gentle D., Thornalley M., and Waring M. J. (1994) Sequence selective binding to DNA of cis-and trans-butamidme analogues of the anti-Pneumocystis carmn pneumonia drug pentamidme. Mol Pharm 46, 313–322

    CAS  Google Scholar 

  45. Bailly C., Gentle D., Hamy F., Purcell M., and Waring M. J. (1994) Localized chemical reactivity in DNA associated with the sequence specific bisintercalation of echinomycin Biochem J 300, 165–173

    Article  CAS  Google Scholar 

  46. Ridge G. S., Bailly C., Graves D. E., and Waring M. J. (1994) Daunomycin modifies the sequence-selective recognition of DNA by actinomycin. Nucleic Acids Res. 22, 5241–5246.

    Article  CAS  Google Scholar 

  47. Waterloh K. and Fox K. R. (1992) Secondary (non-GpC) binding sites for actinomycin on DNA. Biochim Biophys Acta 1131, 300–306

    Article  CAS  Google Scholar 

  48. Fletcher M. C. and Fox K. R. (1993) Visualising the kinetics of dissociation of actinomycin from individual binding sites in mixed sequence DNA by DNase I footprinting Nucleic Acids Res 21, 1339–1344

    Article  CAS  Google Scholar 

  49. Fletcher M. C. and Fox K. R. (1996) Dissociation kinetics of echinomycin from CpG sites in different sequence environment Biochemistry 35, 1064–1075

    Article  CAS  Google Scholar 

  50. Huang Y.-Q., Rehfuss R. P., LaPlante S. R., Boudreau E Borer P. N., and Lane M. J. (1988) actinomycin D Induced DNAase I cleavage enhancement caused by sequence specific propagation of an altered DNA structure Nucleic Acids Res 16, 11,125–11,139

    Article  CAS  Google Scholar 

  51. Bishop K. D., Borer P. N., Huang Y.-Q., and Lane M. J. (1991) Actinomycin D induced DNase I hypersensitivity and asymmetric structure transmission in a DNA hexadecamer Nucleic Acids Res 19, 87l–875

    Article  Google Scholar 

  52. Maxam A. M. and Gilbert W. (1980) Sequencing end labelled DNA with base-specific chemical cleavages Methods Enzymol 65, 499–560

    Article  CAS  Google Scholar 

  53. Lavesa M., Olsen R. K., and Fox K. R. (1993) Sequence spectfic binding of [N-MeCys3,N-MeCys7] TANDEM to TpA. Biochem J 289, 605–607.

    Article  CAS  Google Scholar 

  54. Ward B. Rehfuss R., Goodisman J., and Dabrowtak J. C. (1988) Rate enhancements in the DNase I footprinting experiment Nucleic Acids Res 16, 1359–1369

    Article  CAS  Google Scholar 

  55. Ward B. Rehfuss R. Goodisman J., and Dabrowtak J. D. (1988) Determination of netropsin-DNA binding constants from footprinting data Biochemistry 27, 1198–1205

    Article  CAS  Google Scholar 

  56. Fox K. R. and Waring M. J. (1987) footprinting at low temperatures evidence that ethidium and other sample intercalators can discriminate between different nucleotide sequences Nucleic Acids Res 15, 49l–507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa NJ

About this protocol

Cite this protocol

Fox, K.R. (1997). DNase I Footprinting. In: Fox, K.R. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology™, vol 90. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-447-X:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-447-X:1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-447-1

  • Online ISBN: 978-1-59259-574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics