Skip to main content

Using Retroviruses to Express Genes in Primary Megakaryocyte Lineage Cells

  • Protocol
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 273))

  • 1132 Accesses

Abstract

Megakaryocytes in adult human bone marrow are estimated to constitute approx 0.4% of the total marrow cells (1), and our experience suggests that fewer than 0.5% of low-density nucleated murine bone marrow cells express the megakaryocyte-lineage marker CD41 (integrin αIIb). Historically, the infrequent occurrence of megakaryocyte-lineage cells in bone marrow has been a significant obstacle to the procurement of primary megakaryocyte-lineage cells for biological studies. However, currently available conditions allow one to expand these cells in culture. In this chapter we describe protocols for using retroviruses to selectively infect early megakaryocyte-lineage cells and to infect mature megakaryocytes. The protocols allow one to study the effect of specific gene products on lineage development and biological functions of these primary cells. A basic understanding of retroviruses and the retrovirus life cycle is assumed (for review, see refs. 2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine, R. F. (1980) Isolation and characterization of normal human megakaryocytes. Br. J. Haematol. 45, 487–497.

    Article  PubMed  CAS  Google Scholar 

  2. Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds. (1977) Retroviruses. Cold Spring Harbor Laboratory Press, Plainville, NY.

    Google Scholar 

  3. http://www.stanford.edu/group/nolan/.

  4. Miller, A. D. (1997) Retroviruses, in Retroviruses (Coffin, J. M., Hughes, S. H., and Varmus, H. E., eds.), Cold Spring Harbor Press, Plainville, NY, pp. 437–474.

    Google Scholar 

  5. O’Doherty, U., Swiggard, W. J., and Malim, M. H. (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 74, 10,074–10,080.

    Article  PubMed  Google Scholar 

  6. Burstein, S. A., Dubart, A., Norol, F., Debili, N., Friese, P., Downs, T., et al. (1999) Expression of a foreign protein in human megakaryocytes and platelets by retrovirally mediated gene transfer. Exp. Hematol. 27, 110–116.

    Article  PubMed  CAS  Google Scholar 

  7. Wilcox, D. A., Olsen, J. C., Ishizawa, L., Griffith, M., and White, G. C., 2nd (1999) Integrin αIIb promoter-targeted expression of gene products in megakaryocytes derived from retro-virus-transduced human hematopoietic cells. Proc. Natl. Acad. Sci. USA 96, 9654–9659.

    Article  PubMed  CAS  Google Scholar 

  8. Wilcox, D. A., Olsen, J. C., Ishizawa, L., Bray, P. F., French, D. L., Steeber, D. A., et al. (2000) Megakaryocyte-targeted synthesis of the integrin β3-subunit results in the phenotypic correction of Glanzmann thrombasthenia. Blood 95, 3645–3651.

    PubMed  CAS  Google Scholar 

  9. Lecine, P., Italiano, J. E., Jr., Kim, S. W., Villeval, J. L., and Shivdasani, R. A. (2000) Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood 96, 1366–1373.

    PubMed  CAS  Google Scholar 

  10. Hawley, R. G. (1994) High-titer retroviral vectors for efficient transduction of functional genes into murine hematopoietic stem cells. Ann. NY Acad. Sci. 716, 327–330.

    Article  PubMed  CAS  Google Scholar 

  11. Baccini, V., Roy, L., Vitrat, N., Chagraoui, H., Sabri, S., Le Couedic, J. P., et al. (2001) Role of p21(Cip1/Waf1) in cell-cycle exit of endomitotic megakaryocytes. Blood 98, 3274–3282.

    Article  PubMed  CAS  Google Scholar 

  12. Young, J. A., Bates, P., and Varmus, H. E. (1993) Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 67, 1811–1816.

    PubMed  CAS  Google Scholar 

  13. Bates, P., Young, J. A., and Varmus, H. E. (1993) A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  14. Federspiel, M. J., Bates, P., Young, J. A., Varmus, H. E., and Hughes, S. H. (1994) A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc. Natl. Acad. Sci. USA 91, 11,241–11,245.

    Article  PubMed  CAS  Google Scholar 

  15. Murphy, G. J. and Leavitt, A. D. (1999) A model for studying megakaryocyte development and biology. Proc. Natl. Acad. Sci. USA 96, 3065–3070.

    Article  PubMed  CAS  Google Scholar 

  16. Gaur, M., Murphy, G. J., deSauvage, F. J., and Leavitt, A. D. (2001) Characterization of Mpl mutants using primary megakaryocyte-lineage cells from mpl ―/― mice: a new system for Mpl structure-function studies. Blood 97, 1653–1661.

    Article  PubMed  CAS  Google Scholar 

  17. Quintrell, N., Hughes, S. H., Varmus, H. E., and Bishop, J. M. (1980) Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. J. Mol. Biol. 143, 363–393.

    Article  PubMed  CAS  Google Scholar 

  18. Federspiel, M. J. and Hughes, S. H. (1997) Retroviral gene delivery. Meth. Cell Biol. 52, 179–214.

    Article  CAS  Google Scholar 

  19. Boerkoel, C. F., Federspiel, M. J., Salter, D. W., Payne, W., Crittenden, L. B., Kung, H. J., et al. (1993) A new defective retroviral vector system based on the Bryan strain of Rous sarcoma virus. Virology 195, 669–679.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis, B. C., Chinnasamy, N., Morgan, R. A., and Varmus, H. E. (2001) Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J. Virol. 75, 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  21. Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.

    PubMed  CAS  Google Scholar 

  22. Kingston, R. E., Chen, C. A., Okayama, H., and Rose, J. K. (2003) Transfection of DNA into mammalian cells, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G, Smith, J. A., et al., eds.), Vol. 2. John Wiley & Sons, Inc., New York, pp. 9.1.1–9.1.11.

    Google Scholar 

  23. Yee, J. K., Friedmann, T., and Burns, J. C. (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol. 43, 99–112.

    Article  PubMed  CAS  Google Scholar 

  24. http://tronolab.unige.ch/.

  25. Zennou, V., Serguera, C., Sarkis, C., Colin, P., Perret, E., Mallet, J., et al. (2001) The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat. Biotechnol. 19, 446–450.

    Article  PubMed  CAS  Google Scholar 

  26. Sirven, A., Pflumio, F., Zennou, V., Titeux, M., Vainchenker, W., Coulombel, L., et al. (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96, 4103–4110.

    PubMed  CAS  Google Scholar 

  27. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., and Naldini, L. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222.

    Article  PubMed  CAS  Google Scholar 

  28. Donello, J. E., Loeb, J. E., and Hope, T. J. (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J. Virol. 72, 5085–5092.

    PubMed  CAS  Google Scholar 

  29. Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892.

    PubMed  CAS  Google Scholar 

  30. Ody, C., Vaigot, P., Quéré, P., Imhof, B. A., and Corbel, C. (1999) Glycoprotein IIb-IIIa is expressed on avian multilineage hematopoietic progenitor cells. Blood 93, 2898–2906.

    PubMed  CAS  Google Scholar 

  31. Tronik-Le Roux, D., Roullot, V., Schweitzer, A., Berthier, R., and Marguerie, G. (1995) Suppression of erythro-megakaryocytopoiesis and the induction of reversible thrombocytopenia in mice transgenic for the thymidine kinase gene targeted by the platelet glycoprotein alpha IIb promoter [published erratum appears in J. Exp. Med. 1995 Oct 1;1182(4):1177]. J. Exp. Med. 181, 2141–2151.

    Google Scholar 

  32. Tropel, P., Roullot, V., Vernet, M., Poujol, C., Pointu, H., Nurden, P., et al. (1997) A 2.7-kb portion of the 5′ flanking region of the murine glycoprotein alpha IIb gene is transcriptionally active in primitive hematopoietic progenitor cells. Blood 90, 2995–3004.

    PubMed  CAS  Google Scholar 

  33. Fujita, H., Hashimoto, Y., Russell, S., Zieger, B., and Ware, J. (1998) In vivo expression of murine platelet glycoprotein Ibα, Blood 92, 488–495.

    PubMed  CAS  Google Scholar 

  34. Ware, J., Hashimoto, Y., Zieger, B., and Russell, S. (1996) Controlling elements of platelet glycoprotein Ibα expression. C. R. Acad. Sci. III 319, 811–817.

    PubMed  CAS  Google Scholar 

  35. Ware, J., Russell, S. R., Marchese, P., and Ruggeri, Z. M. (1993) Expression of human platelet glycoprotein Iba in transgenic mice. J. Biol. Chem. 268, 8376–8382.

    PubMed  CAS  Google Scholar 

  36. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  37. Hatziioannou, T. and Goff, S. P. (2001) Infection of nondividing cells by Rous sarcoma virus. J. Virol. 75, 9526–9531.

    Article  PubMed  CAS  Google Scholar 

  38. Mazur, E. M., Cohen, J. L., Bogart, L., Mufson, R. A., Gesner, T. G, Yang, Y. C., et al. (1988) Recombinant gibbon interleukin-3 stimulates megakaryocyte colony growth in vitro from human peripheral blood progenitor cells. J. Cell. Physiol. 136, 439–446.

    Article  PubMed  CAS  Google Scholar 

  39. Dolzhanskiy, A., Hirst, J., Basch, R. S., and Karpatkin, S. (1998) Complementary and antagonistic effects of IL-3 in the early development of human megakaryocytes in culture. Br. J. Haematol. 100, 415–426.

    Article  PubMed  CAS  Google Scholar 

  40. Segal, G. M., Stueve, T., and Adamson, J. W. (1988) Analysis of murine megakaryocyte colony size and ploidy: effects of interleukin-3. J. Cell. Physiol. 137, 537–544.

    Article  PubMed  CAS  Google Scholar 

  41. Veiby, O. P., Jacobsen, F. W., Cui, L., Lyman, S. D., and Jacobsen, S. E. (1996) The flt3 ligand promotes the survival of primitive hemopoietic progenitor cells with myeloid as well as B lymphoid potential. Suppression of apoptosis and counteraction by TNF-alpha and TGF-beta. J. Immunol. 157, 2953–2960.

    PubMed  CAS  Google Scholar 

  42. Kobari, L., Giarratana, M. C., Poloni, A., Firat, H., Labopin, M., Gorin, N. C, et al. (1998) Flt 3 ligand, MGDF, Epo and G-CSF enhance ex vivo expansion of hematopoietic cell compartments in the presence of SCF, IL-3 and IL-6. Bone Marrow Transplant 21, 759–767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Gaur, M., Murphy, G.J., Frampton, J., Leavitt, A.D. (2004). Using Retroviruses to Express Genes in Primary Megakaryocyte Lineage Cells. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology™, vol 273. Humana Press. https://doi.org/10.1385/1-59259-783-1:381

Download citation

  • DOI: https://doi.org/10.1385/1-59259-783-1:381

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-011-3

  • Online ISBN: 978-1-59259-783-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics