Skip to main content

Generation of Closed Transverse Fractures in Small Animals

  • Protocol
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1130))

Abstract

The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented, and general considerations when setting up an experiment using this model are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salisbury-Palomares KT et al (2009) Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res 27:1123–1132

    Article  Google Scholar 

  2. Miclau T et al (2007) Effects of delayed stabilization on fracture healing. J Orthop Res 25(12):1552–1558

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu C et al (2011) Mechanical stability affects angiogenesis during early fracture healing. J Orthop Trauma 25(8):494–499

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yu YY et al (2012) Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J Vis Exp 11:62

    Google Scholar 

  5. Bonnarens F, Einhorn T (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2(1):97–101

    Article  CAS  PubMed  Google Scholar 

  6. Hiltunen A, Vuorio E, Aro H (1993) A standardized experimental fracture in the mouse tibia. J Orthop Res 11(2):305–312

    Article  CAS  PubMed  Google Scholar 

  7. Kon T et al (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16(6):1004–1014

    Article  CAS  PubMed  Google Scholar 

  8. Gerstenfeld LC et al (2006) Three dimensional reconstruction of fracture callus morphogenesis demonstrates asymmetry in callus development. J Histochem Cytochem 54(11):1215–1228

    Article  CAS  PubMed  Google Scholar 

  9. Marturano JE et al (2008) An improved murine femur fracture device for bone healing studies. J Biomech 41(6):1222–1228

    Article  PubMed  Google Scholar 

  10. Zhang X et al (2002) Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 109(11):1405–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colnot C et al (2003) Altered fracture repair in the absence of MMP9. Development 130(17):4123–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsuji K et al (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429

    Article  CAS  PubMed  Google Scholar 

  13. Jepsen KJ et al (2008) Genetic variation in the patterns of skeletal progenitor cell differentiation and progression during endochondral bone formation affects the rate of fracture healing. J Bone Miner Res 23(8):1204–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grimes R et al (2011) The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. J Bone Miner Res 26(11):2597–2609

    Article  CAS  PubMed  Google Scholar 

  15. Wigner NA et al (2010) Acute phosphate restriction leads to impaired fracture healing and resistance to BMP-2. J Bone Miner Res 25(4):724–733

    CAS  PubMed  Google Scholar 

  16. Vortkamp A et al (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71:65–76

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson C et al (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  CAS  PubMed  Google Scholar 

  18. Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    Article  CAS  PubMed  Google Scholar 

  19. Simon AM, Manigrasso MB, O’Connor JP (2002) Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res 17(6):963–976

    Article  CAS  PubMed  Google Scholar 

  20. Alkhiary YM et al (2005) Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am 87(4):731–741

    PubMed  Google Scholar 

  21. Kakar S et al (2007) Enhanced chondrogenesis and Wnt-signaling in parathyroid hormone treated fractures. J Bone Miner Res 22(12):1903–1912

    Article  CAS  PubMed  Google Scholar 

  22. Gerstenfeld LC et al (2008) Comparison of bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24(2):196–208

    Article  Google Scholar 

  23. Einhorn TA (2003) A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am 85-A(8):1425–3

    Article  PubMed  Google Scholar 

  24. Lu C et al (2005) Cellular basis for age-related changes in fracture repair. J Orthop Res 23(6):1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu C et al (2008) Effect of age on vascularization during fracture repair. J Orthop Res 26(10):1384–1389

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meyer J et al (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435

    Article  PubMed  Google Scholar 

  27. Meyer RA Jr et al (2003) Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am 85-A:1243–1254

    Article  PubMed  Google Scholar 

  28. Halloran BP et al (2002) Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 17(6):1044–1050

    Article  PubMed  Google Scholar 

  29. Glatt V et al (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22(8):1197–1207

    Article  PubMed  Google Scholar 

  30. Willie B et al (2009) Mechanical characterization of external fixator stiffness for a rat femoral fracture model. J Orthop Res 27(5):687–693

    Article  PubMed  Google Scholar 

  31. Gerstenfeld LC et al (2007) Selective and nonselective cyclooxygenase-2 inhibitors and experimental fracture-healing: reversibility of effects after short-term treatment. J Bone Joint Surg Am 89(1):114–125

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH Grants AR056637 and AR062642.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

De Giacomo, A., Morgan, E.F., Gerstenfeld, L.C. (2014). Generation of Closed Transverse Fractures in Small Animals. In: Hilton, M. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 1130. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-989-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-989-5_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-988-8

  • Online ISBN: 978-1-62703-989-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics