Skip to main content

Systematic Methodology for the Development of Mathematical Models for Biological Processes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1073))

Abstract

Synthetic biology gives researchers the opportunity to rationally (re-)design cellular activities to achieve a desired function. The design of networks of pathways towards accomplishing this calls for the application of engineering principles, often using model-based tools. Success heavily depends on model reliability. Herein, we present a systematic methodology for developing predictive models comprising model formulation considerations, global sensitivity analysis, model reduction (for highly complex models or where experimental data are limited), optimal experimental design for parameter estimation, and predictive capability checking. Its efficacy and validity are demonstrated using an example from bioprocessing. This approach systematizes the process of developing reliable mathematical models at a minimum experimental cost, enabling in silico simulation and optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jimenez Del Val I, Nagy JM, Kontoravdi C (2011) A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog 27:1730–1743

    Article  CAS  Google Scholar 

  2. Selvarasu S, Ho YS et al (2012) Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng 109:1415–1429

    Article  CAS  Google Scholar 

  3. Hildebrandt S, Raden D et al (2008) A top-down approach to mechanistic biological modeling: application to the single-chain antibody folding pathway. Biophys J 95:3535–3558

    Article  CAS  Google Scholar 

  4. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New York

    Google Scholar 

  5. Kendall M, Stuart A (1979) The advanced theory of statistics, vol 2. Macmillan, New York

    Google Scholar 

  6. Mckay MD (1995) Evaluating prediction uncertainty. US Nuclear Regulatory Commission and Los Alamos National Laboratory, Washington, DC

    Book  Google Scholar 

  7. Cukier RI, Fortuin CM et al (1973) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. J Chem Phys 59:3873–3878

    Article  CAS  Google Scholar 

  8. Cukier RI, Schaibly JH, Shuler KE (1975) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations. J Chem Phys 63:1140–1149

    Article  CAS  Google Scholar 

  9. Cukier RI, Levine HB, Shuler KE (1978) Non-linear sensitivity analysis of multi-parameter model systems. J Comput Phys 26:1–42

    Article  Google Scholar 

  10. Schaibly JH, Shuler KE (1973) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 2. Applications. J Chem Phys 59:3879–3888

    Article  CAS  Google Scholar 

  11. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  Google Scholar 

  12. Sobol IM, Kucherenko S (2009) Derivative based global sensitivity measures and their link with global sensitivity indices. Math Comput Simul 79:3009–3017

    Article  Google Scholar 

  13. Kiparissides A, Kucherenko SS et al (2009) Global sensitivity analysis challenges in biological systems modeling. Ind Eng Chem Res 48:7168–7180

    Article  CAS  Google Scholar 

  14. Versyck KJ, Claes JE, Vanimpe JF (1997) Practical identification of unstructured growth kinetics by application of optimal experimental design. Biotechnol Prog 13:524–531

    Article  CAS  Google Scholar 

  15. Nathanson MH, Saidel GM (1985) Multiple-objective criteria for optimal experimental design—application to ferrokinetics. Am J Physiol 248:R378–R386

    CAS  Google Scholar 

  16. Munack A (1989) Optimal feeding strategy for identification of monod-type models by fed-batch experiments. Computer applications in fermentation technology: modelling and control of biotechnological processes. Elsevier Applied Science Publishers Ltd, Barking Essex

    Google Scholar 

  17. Van Derlinden E, Bernaerts K, Van Impe JF (2008) Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments. Int J Food Microbiol 128:89–100

    Article  Google Scholar 

  18. Bernaerts K, Gysemans KPM et al (2006) Optimal experiment design for cardinal values estimation: guidelines for data collection (vol 100, pg 153, 2005). Int J Food Microbiol 110:112–113

    Article  Google Scholar 

  19. Jacques JA (1998) Design of experiments. J Franklin Inst 335:259–279

    Article  Google Scholar 

  20. Sidoli FR, Mantalaris A, Asprey SP (2004) Modelling of Mammalian cells and cell culture processes. Cytotechnology 44:27–46

    Article  CAS  Google Scholar 

  21. Kontoravdi C, Asprey SP et al (2005) Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures. Biotechnol Progress 21:1128–1135

    Article  CAS  Google Scholar 

  22. Process Systems Enterprise (2002) gPROMS Advanced User Guide, London, UK

    Google Scholar 

  23. Kontoravdi C, Pistikopoulos EN, Mantalaris A (2010) Systematic development of predictive mathematical models for animal cell cultures. Comput Chem Eng 34:1192–1198

    Article  CAS  Google Scholar 

  24. Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28:1376–1389

    Article  CAS  Google Scholar 

  25. Miller WM, Blanch HW, Wilke CR (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate, and pH Biotechnology and Bioengineering 32(8):947–965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kontoravdi, C. (2013). Systematic Methodology for the Development of Mathematical Models for Biological Processes. In: Polizzi, K., Kontoravdi, C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1073. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-625-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-625-2_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-624-5

  • Online ISBN: 978-1-62703-625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics