Skip to main content

Measuring Membrane Voltage with Microbial Rhodopsins

  • Protocol
  • First Online:
Fluorescent Protein-Based Biosensors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1071))

Abstract

Membrane voltage (Vm) is a fundamental biological parameter that is essential for neuronal communication, cardiac activity, transmembrane transport, regulation of signaling, and bacterial motility. Optical measurements of Vm promise new insights into how voltage propagates within and between cells, but effective optical contrast agents have been lacking. Microbial rhodopsin-based fluorescent voltage indicators are exquisitely sensitive and fast, but very dim, necessitating careful attention to experimental procedures. This chapter describes how to make optical voltage measurements with microbial rhodopsins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A 61:883–888

    Article  PubMed  CAS  Google Scholar 

  2. Cohen L et al (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19:1–36

    Article  PubMed  CAS  Google Scholar 

  3. Peterka DS, Takahashi H, Yuste R (2011) Imaging voltage in neurons. Neuron 69:9–21

    Article  PubMed  CAS  Google Scholar 

  4. Herron TJ, Lee P, Jalife J (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110:609–623

    Article  PubMed  CAS  Google Scholar 

  5. Mutoh H, Perron A, Akemann W, Iwamoto Y, Knöpfel T (2011) Optogenetic monitoring of membrane potentials. Exp Physiol 96:13–18

    Article  PubMed  Google Scholar 

  6. Akemann W, Mutoh H, Perron A, Rossier J, Knopfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  PubMed  CAS  Google Scholar 

  7. Jin L et al (2011) Random insertion of split-cans of the fluorescent protein venus into shaker channels yields voltage sensitive probes with improved membrane localization in mammalian cells. J Neurosci Methods 199:1–9

    Article  PubMed  CAS  Google Scholar 

  8. Tsutsui H, Higashijima S, Miyawaki A, Okamura Y (2010) Visualizing voltage dynamics in zebrafish heart. J Physiol 588:2017–2021

    Article  PubMed  CAS  Google Scholar 

  9. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE (2011) Electrical spiking in escherichia coli probed with a fluorescent voltage indicating protein. Science 333:345–348

    Article  PubMed  CAS  Google Scholar 

  10. Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE (2012) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods 9:90–95

    Article  CAS  Google Scholar 

  11. Chow BY et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  PubMed  CAS  Google Scholar 

  12. Kralj JM, Hou, JH, Douglass AD, Wortzman J, Engert F, Cohen AE (2012) Simultaneous measurement of membrane voltage and calcium with a genetically encoded reporter. Submitted

    Google Scholar 

  13. Akerboom J et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840

    Google Scholar 

  14. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  15. Madisen L et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  PubMed  CAS  Google Scholar 

  16. Goslin K (1998) Culturing nerve cells. The MIT Press, Cambridge, MA

    Google Scholar 

  17. Burgalossi A et al (2012) Analysis of neurotransmitter release mechanisms by photolysis of caged Ca2+ in an autaptic neuron culture system. Nat Protoc 7:1351–1365

    Article  PubMed  CAS  Google Scholar 

  18. Ricoult SG, Goldman JS, Stellwagen D, Juncker D, Kennedy TE (2012) Generation of microisland cultures using microcontact printing to pattern protein substrates. J Neurosci Methods 208(1):10–7

    Article  PubMed  CAS  Google Scholar 

  19. Sgro AE et al (2011) A high-throughput method for generating uniform microislands for autaptic neuronal cultures. J Neurosci Methods 198(2):230–235

    Article  PubMed  CAS  Google Scholar 

  20. Wheeler BC, Brewer GJ (2010) Designing neural networks in culture. Proc IEEE 98:398–406

    Article  CAS  Google Scholar 

  21. Feinerman O, Rotem A, Moses E (2008) Reliable neuronal logic devices from patterned hippocampal cultures. Nat Phys 4:967–973

    Article  CAS  Google Scholar 

  22. Jiang M, Chen G (2006) High Ca2+ -phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700

    Article  PubMed  CAS  Google Scholar 

  23. Lentivirus production for high-titer, cell-specific, in vivo neural labeling, http://syntheticneurobiology.org/protocols/protocoldetail/31/12

  24. Mattis J et al (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172

    Article  PubMed  Google Scholar 

  25. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21(5):566–572

    Article  PubMed  CAS  Google Scholar 

  26. Tomer R, Khairy K, Amat F, Keller PJ (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9:755–763

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Harvard Center for Brain Science, ONR grant N000141110-549, NIH grants 1-R01-EB012498-01 and New Innovator grant 1-DP2-OD007428, the Harvard/MIT Joint Research Grants Program in Basic Neuroscience, a Sloan Foundation Fellowship, and a Dreyfus Teacher Scholar Award. D.R.H is supported by an NSF graduate research fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cohen, A.E., Hochbaum, D.R. (2014). Measuring Membrane Voltage with Microbial Rhodopsins. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics