Skip to main content

Measurement of Vitamin D

  • Protocol
  • First Online:
Hormone Assays in Biological Fluids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1065))

Abstract

There are many different methods to choose for vitamin D analysis. While immunoassays are available commercially and readily automated, specificity for 25-hydroxyvitamin D2 and D3 is variable. Chemical assays such as HPLC and LC-MS/MS have greater specificity and are capable of detecting 25-hydroxyvitamin D2 and D3 separately, but are more complex and require method development. Currently LC-MS/MS is considered the method of choice for 25-hydroxyvitamin D analysis and the methods given here are for LC-MS/MS analysis of serum, plasma and dried whole blood for the separate quantitation of 25-hydroxyvitamin D2 and D3. In addition to highlighting potential interferences, the many non-analytical factors that influence vitamin D measurement are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haddow JE (2011) Vitamin D and rickets: much has been accomplished, but there is room for improvement. J Med Screen 18:58–59

    Article  PubMed  Google Scholar 

  2. Lips P (2000) Vitamin D deficiency and secondary hyperparathyroidismin the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  Google Scholar 

  3. Holick M (2002) Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes 8:87–97

    Article  Google Scholar 

  4. Gille O (2006) Health Research Forum occasional reports: no. 2, sunlight, vitamin D and health. Health Research Forum Publishing, London, pp 18–46. http://www.healthresearchforum.org.uk/reports.htmL. Accessed 16 Dec 2011

  5. Holick MF (2011) Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets 12:4–18

    Article  PubMed  CAS  Google Scholar 

  6. Holick M, Maclaughlin J, Clark M et al (1980) Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210:203–205

    Article  PubMed  CAS  Google Scholar 

  7. Holick MF (1981) The cutaneous photosynthesis of vitamin D3 a unique photoendocrine system. J Invest Dermatol 76:51–58

    Article  Google Scholar 

  8. Webb AR, Kline L, Holick MF (1988) Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 67:373–378

    Article  PubMed  CAS  Google Scholar 

  9. Matsuoka LY, Ide L, Wortsman J et al (1987) Suscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 64:1165–1168

    Article  PubMed  CAS  Google Scholar 

  10. Ford L, Graham V, Wall A et al (2006) Vitamin D concentrations in an UK inner-city multicultural outpatient population. Ann Clin Biochem 43:468–473

    Article  PubMed  CAS  Google Scholar 

  11. Pal B, Marshall T, James C et al (2003) Distribution analysis of vitamin D highlights differences in population subgroups: preliminary observations from a pilot study in UK adults. J Endocrinol 179:119–129

    Article  PubMed  CAS  Google Scholar 

  12. Hirani V, Primatesta P (2005) Vitamin D concentrations among people aged 65 years and over living in private households and institutions in England: population survey. Age Ageing 34:485–491

    Article  PubMed  Google Scholar 

  13. Hatun S, Islam O, Cizmecioglu F et al (2005) Subclinical vitamin D deficiency in adolescent girls who wear concealing clothing. J Nutr 135:218–222

    PubMed  CAS  Google Scholar 

  14. Trang H, Cole DE, Rubin LA et al (1998) Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 68:854–858

    PubMed  CAS  Google Scholar 

  15. Armas LAG, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89:5387–5391

    Article  PubMed  CAS  Google Scholar 

  16. Holick FM, Biancuzzo RM, Chen TC et al (2009) Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 93:677–681

    Article  Google Scholar 

  17. Houghton LA, Vieth R (2006) The case against ergocalciferl (vitamin D2) as a vitamin supplement. Am J Clin Nutr 84:694–697

    PubMed  CAS  Google Scholar 

  18. Holick FM (2009) Vitamin D status: measurement, interpretation and clinical application. Ann Epidemiol 19:73–78

    Article  PubMed  Google Scholar 

  19. Zerwekh JE (2008) Blood biomarkers of vitamin D status. Am J Clin Nutr 87:1087S–1091S

    PubMed  CAS  Google Scholar 

  20. Hollis BW (2000) Comparison of commercially available 125I-based RIA methods for the determination of circulating 25-hydroxyvitamin D. Clin Chem 46:1657–1661

    PubMed  CAS  Google Scholar 

  21. Carter GD, Carter R, Jones J (2004) How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 50:2195–2197

    Article  PubMed  CAS  Google Scholar 

  22. Costelloe SJ, Woolmank E, Rainbow S et al (2009) Is high-throughput measurement of 25-hydroxyvitamin D3 without 25-hydroxyvitamin D2 appropriate for routine clinical use? Ann Clin Biochem 46:86–87

    Article  PubMed  CAS  Google Scholar 

  23. Roth HJ, Schmidt-Gayk H, Weber H et al (2008) Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. Ann Clin Biochem 45:153–159

    Article  PubMed  CAS  Google Scholar 

  24. Carter GD (2009) 25-Hydroxyvitamin D assays: the quest for accuracy. Clin Chem 55:1300–1302

    Article  PubMed  CAS  Google Scholar 

  25. Gilbertson TJ, Styrd RP (1977) High performance liquid chromatographic assay for 25-hydroxyvitamin D3 in serum. Clin Chem 23:1700–1704

    PubMed  CAS  Google Scholar 

  26. Lensmeyer GL, Wiebe DA, Binkley N et al (2006) HPLC method for 25-hydroxyvitamin D measurement: comparison with contemporary assays. Clin Chem 52:1120–1126

    Article  PubMed  CAS  Google Scholar 

  27. Jones G (1978) Assay of vitamins D2 and D3 and 25 hydroxyvitamin D2 and D3 in human serum by high performance liquid chromatography. Clin Chem 24:287–298

    PubMed  CAS  Google Scholar 

  28. Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 51:1683–1690

    Article  PubMed  CAS  Google Scholar 

  29. Tsugawa N, Suhara Y, Kamao M et al (2005) Determination of 25-hydroxyvitamin D in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal Chem 77:3001–3007

    Article  PubMed  CAS  Google Scholar 

  30. Saenger AK, Laha TJ, Bremner DE et al (2006) Quantification of serum 25-hydroxyvitamin D2 and D3 using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin D deficiency. Am J Clin Pathol 125:914–920

    Article  PubMed  CAS  Google Scholar 

  31. Coldwell RD, Trafford DJ, Varley MJ et al (1989) Measurement of 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D2 and 25,26-dihydroxyvitamin D3 in a single plasma sample by mass fragmentography. Clin Chim Acta 180:157–168

    Article  PubMed  CAS  Google Scholar 

  32. Binkley N, Krueger D, Cowgill CS et al (2007) Assay variation confounds the diagnosis of hypovitaminosis D: call for standardization. J Clin Endocrinol Metab 89:3152–3157

    Article  Google Scholar 

  33. Singh RJ (2008) Are clinical laboratories prepared for accurate testing of 25-hydroxyvitamin D? Clin Chem 54:221–223

    Article  PubMed  CAS  Google Scholar 

  34. Fraser WD (2009) Standardization of vitamin D assays: art or science? Ann Clin Biochem 46:3–4

    Article  PubMed  Google Scholar 

  35. Phinney KW (2008) Development of a standard reference material for vitamin D in serum. Am J Clin Nutr 88:511S–512S

    PubMed  CAS  Google Scholar 

  36. Yates AM, Bowron A, Carlton L et al (2008) Inter-laboratory variation in 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 is significantly improved if a common calibration material is used. Clin Chem 54:2082–2084

    Article  PubMed  CAS  Google Scholar 

  37. Carter GD, Jones JC (2009) Use of a common standard improves the performance of liquid chromatography-tandem mass spectrometry methods for serum 25-hydroxyvitamin D. Ann Clin Biochem 46:79–81

    Article  PubMed  CAS  Google Scholar 

  38. Veith R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentration and safety. Am J Clin Nutr 69:842–856

    Google Scholar 

  39. Hollis B (2005) Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency implications for establishing a new effective dietary intake recommendations for vitamin D. J Nutr 135:317–322

    PubMed  CAS  Google Scholar 

  40. Veith R (2006) Symposium: optimising vitamin D intake for populations with special needs: barriers to effective food fortification and supplementation. Critique of the considerations for establishing the tolerable upper intake level for vitamin D: critical need for revision upwards. J Nutr 136:1117–1122

    Google Scholar 

  41. Elder PA, Lewis JG, King RI et al (2009) An anomalous result from gel tubes for vitamin D. Clin Chim Acta 410:95

    Article  PubMed  CAS  Google Scholar 

  42. Veith R (2000) Problems with direct 25-hydroxylation assays and the target amount of vitamin D nutrition desirable for patients with osteoporosis. Osteoporos Int 11:635–636

    Article  Google Scholar 

  43. Ravinder J, Singh RL, Taylor G et al (2006) GrebeC-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab 91:3055–3061

    Article  Google Scholar 

  44. Eyles D, Anderson C, Ko P et al (2009) A sensitive LC/MS/MS assay of 25OH vitamin D3 and 25OH vitamin D2 in dried blood spots. Clin Chim Acta 403:145–151

    Article  PubMed  CAS  Google Scholar 

  45. Higashi T, Shibayama Y, Fuji M et al (2008) Liquid chromatography-tandem mass spectrometric method for determination of salivary 25-hydroxyvitamin D3: a non-invasive tool for the assessment of vitamin D status. Anal Bioanal Chem 391:229–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ford, L. (2013). Measurement of Vitamin D. In: Wheeler, M. (eds) Hormone Assays in Biological Fluids. Methods in Molecular Biology, vol 1065. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-616-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-616-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-615-3

  • Online ISBN: 978-1-62703-616-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics