Skip to main content

Methods for Identification of cGKI Substrates

  • Protocol
  • First Online:
Guanylate Cyclase and Cyclic GMP

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1020))

Abstract

The cGMP-dependent protein kinases (cGK), which belong to the family of serine/threonine kinases, exhibit their diverse functions in cells through interaction with a variety of substrate proteins. Several substrates were identified and the interactions studied using different methods inter alia co-immunoprecipitation (Co-IP) and cGMP-agarose affinity purification. In the following chapter, we will describe the preparation of cell or tissue lysates, the procedures of cGMP-agarose affinity purification and co-immunoprecipitation, and finally the separation and analysis of the protein complexes by SDS-PAGE or mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hofmann F, Feil R, Kleppisch T et al (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    Article  PubMed  CAS  Google Scholar 

  2. Casteel DE, Smith-Nguyen EV, Sankaran B et al (2010) A crystal structure of the cyclic GMP-dependent protein kinase I{beta} dimerization/docking domain reveals molecular details of isoform-specific anchoring. J Biol Chem 285:32684–32688

    Article  PubMed  CAS  Google Scholar 

  3. Wall ME, Francis SH, Corbin JD et al (2003) Mechanisms associated with cGMP binding and activation of cGMP-dependent protein kinase. Proc Natl Acad Sci USA 100:2380–2385

    Article  PubMed  CAS  Google Scholar 

  4. Desch M, Sigl K, Hieke B et al (2010) IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation. Cardiovasc Res 86:496–505

    Article  PubMed  CAS  Google Scholar 

  5. Koller A, Schlossmann J, Ashman K et al (2003) Association of phospholamban with a cGMP kinase signaling complex. Biochem Biophys Res Commun 300:155–160

    Article  PubMed  CAS  Google Scholar 

  6. Given AM, Ogut O, Brozovich FV (2007) MYPT1 mutants demonstrate the importance of aa 888-928 for the interaction with PKGIalpha. Am J Physiol Cell Physiol 292:C432–C439

    Article  PubMed  CAS  Google Scholar 

  7. Surks HK, Mochizuki N, Kasai Y et al (1999) Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science 286:1583–1587

    Article  PubMed  CAS  Google Scholar 

  8. Ammendola A, Geiselhoringer A, Hofmann F et al (2001) Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J Biol Chem 276:24153–24159

    Article  PubMed  CAS  Google Scholar 

  9. Schlossmann J, Ammendola A, Ashman K et al (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201

    Article  PubMed  CAS  Google Scholar 

  10. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein–protein interactions. Proteomics 7:2833–2842

    Article  PubMed  Google Scholar 

  11. Dwane S, Kiely PA (2011) Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2:247–259

    Article  PubMed  Google Scholar 

  12. Kaboord B, Perr M (2008) Isolation of proteins and protein complexes by immunoprecipitation. Methods Mol Biol 424:349–364

    Article  PubMed  CAS  Google Scholar 

  13. Qoronfleh MW, Ren L, Emery D et al (2003) Use of immunomatrix methods to improve protein–protein interaction detection. J Biomed Biotechnol 2003:291–298

    Article  PubMed  Google Scholar 

  14. Geiselhoringer A, Werner M, Sigl K et al (2004) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J 23:4222–4231

    Article  PubMed  Google Scholar 

  15. Bonifacino JS, Dell’Angelica EC, Springer TA (2001) Immunoprecipitation. Curr Protoc Mol Biol Chapter 10, Unit 10 16

  16. Antl M, von Bruhl ML, Eiglsperger C et al (2007) IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109:552–559

    Article  PubMed  CAS  Google Scholar 

  17. Margarucci L, Roest M, Preisinger C et al (2011) Collagen stimulation of platelets induces a rapid spatial response of cAMP and cGMP signaling scaffolds. Mol Biosyst 7:2311–2319

    Article  PubMed  CAS  Google Scholar 

  18. Gallagher SR (2006) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol Chapter 10:Unit 10.2A

  19. Kurien BT, Scofield RH (2009) Nonelectrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots. Methods Mol Biol 536:55–65

    Article  PubMed  CAS  Google Scholar 

  20. Gallagher S, Winston SE, Fuller SA et al (2008) Immunoblotting and immunodetection. In: Frederick M. Ausubel et al (eds) Current ­protocols in molecular biology. Chapter 10, Unit 10 18

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Tang KM, Wang GR, Lu P et al (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    Article  PubMed  CAS  Google Scholar 

  23. Wilson LS, Elbatarny HS, Crawley SW et al (2008) Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proc Natl Acad Sci USA 105:13650–13655

    Article  PubMed  CAS  Google Scholar 

  24. Elion EA (2006) Detection of protein–protein interactions by coprecipitation. Curr Protoc Mol Biol Chapter 20, Unit20 25

    Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  26. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  PubMed  CAS  Google Scholar 

  27. Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4(1):3–29

    Article  PubMed  Google Scholar 

  28. Kricka LJ (1991) Chemiluminescent and bioluminescent techniques. Clin Chem 37(9):1472–1481

    PubMed  CAS  Google Scholar 

  29. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T et al (2007) Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 849:1–31

    Article  PubMed  CAS  Google Scholar 

  30. Chaiyarit S, Thongboonkerd V (2009) Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study. Anal Biochem 394:249–258

    Article  PubMed  CAS  Google Scholar 

  31. Phizicky EM, Fields S (1995) Protein–protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123

    PubMed  CAS  Google Scholar 

  32. Schneider C, Newman RA, Sutherland DR et al (1982) A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem 257:10766–10769

    PubMed  CAS  Google Scholar 

  33. Dickson C (2008) Protein techniques: immunoprecipitation, in vitro kinase assays, and Western blotting. Methods Mol Biol 461:735–744

    Article  PubMed  CAS  Google Scholar 

  34. Kurien BT, Scofield RH (2006) Western ­blotting. Methods 38(4):283–293

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Council (DFG) and the collaborative research center SFB699.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salb, K., Schlossmann, J. (2013). Methods for Identification of cGKI Substrates. In: Krieg, T., Lukowski, R. (eds) Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, vol 1020. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-459-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-459-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-458-6

  • Online ISBN: 978-1-62703-459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics