Skip to main content

Visualization of cGMP with cGi Biosensors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1020))

Abstract

Cyclic guanosine 3′–5′-monophosphate (cGMP) is an important signaling molecule in physiology, pathophysiology, and pharmacological therapy. It has been proposed that the functional outcome of an increase of cGMP in a given cell largely depends on the existence of global versus local cGMP pools. The recent development of genetically encoded fluorescent biosensors for cGMP is a major technical advance in order to monitor the spatiotemporal dynamics and compartmentalization of cGMP signals in living cells. Here we give an overview of the available cGMP sensors and how they can be used to visualize cGMP. The focus is on the fluorescence resonance energy transfer (FRET)-based cGi-type sensors (Russwurm et al., Biochem J 407:69–77, 2007), which are currently among the most useful tools for cGMP imaging in cells, tissues, and living organisms. We present detailed protocols that cover the entire imaging experiment, from the isolation of primary cells from cGi-transgenic mice and adenoviral expression of cGi sensors to the description of the setup required to record FRET changes in single cells and tissues. In-cell calibration of sensors and data evaluation is also described in detail and the limitations and common pitfalls of cGMP imaging are discussed. Specifically, we outline the use of FRET microscopy to visualize cGMP in murine smooth muscle cells (from aorta, bladder, and colon) and cerebellar granule neurons expressing cGi sensors. Most of the protocols can be easily adapted to other cell types and cGMP indicators and can be used as general guidelines for cGMP imaging in living cells, tissues and, eventually, whole organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beavo JA, Brunton LL (2002) Cyclic n­ucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3(9):710–718. doi:10.1038/nrm911

    Article  PubMed  CAS  Google Scholar 

  2. Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93(2):96–105. doi:10.1161/01.RES.0000082524.34487.31

    Article  PubMed  CAS  Google Scholar 

  3. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93(8):700–709. doi:10.1161/01.RES.0000094745.28948.4D

    Article  PubMed  CAS  Google Scholar 

  4. Biel M, Michalakis S (2009) Cyclic nucleotide-gated channels. Handb Exp Pharmacol 191:111–136. doi:10.1007/978-3-540-68964-5_7

    Article  PubMed  CAS  Google Scholar 

  5. Hofmann F, Feil R, Kleppisch T et al (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86(1):1–23. doi:10.1152/physrev.00015.2005

    Article  PubMed  CAS  Google Scholar 

  6. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91(2):651–690. doi:10.1152/physrev.00030.2010

    Article  PubMed  CAS  Google Scholar 

  7. Kleppisch T, Feil R (2009) cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb Exp Pharmacol 191:549–579. doi:10.1007/978-3-540-68964-5_24

    Article  PubMed  CAS  Google Scholar 

  8. Kemp-Harper B, Feil R (2008) Meeting report: cGMP matters. Sci Signal 1(9):pe12. doi:10.1126/stke.19pe12

    Article  PubMed  Google Scholar 

  9. Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5(8):660–670. doi:10.1038/nrd2058

    Article  PubMed  CAS  Google Scholar 

  10. Martel G, Hamet P, Tremblay J (2010) Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 334(1–2):53–65. doi:10.1007/s11010-009-0326-8

    Article  PubMed  CAS  Google Scholar 

  11. Ehret GB, Munroe PB, Rice KM et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367):103–109. doi:10.1038/nature10405

    Article  PubMed  CAS  Google Scholar 

  12. Stasch JP, Becker EM, Alonso-Alija C et al (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410(6825):212–215. doi:10.1038/35065611

    Article  PubMed  CAS  Google Scholar 

  13. Stasch JP, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol 191:277–308. doi:10.1007/978-3-540-68964-5_13

    Article  PubMed  CAS  Google Scholar 

  14. Stasch JP, Schmidt PM, Nedvetsky PI et al (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116(9):2552–2561. doi:10.1172/JCI28371

    Article  PubMed  CAS  Google Scholar 

  15. Schindler U, Strobel H, Schonafinger K et al (2006) Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol Pharmacol 69(4):1260–1268. doi:10.1124/mol.105.018747

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt HH, Schmidt PM, Stasch JP (2009) NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 191:309–339. doi:10.1007/978-3-540-68964-5_14

    Article  PubMed  CAS  Google Scholar 

  17. Sanofi-Aventis (2008–2009) Efficacy and safety study of Ataciguat versus placebo in patients with neuropathic pain (SERENEATI). In: ClinicalTrials.gov [Internet]. National Library of Medicine (US). http://clinicaltrials.gov/ct2/show/NCT00799656 NLM Identifier: NCT00799656. Accessed 31 May 2012

  18. Sanofi-Aventis (2007–2008) Efficacy and safety of HMR1766 in patients with fontaine stage II peripheral arterial disease (ACCELA). In: ClinicalTrials.gov [Internet]. National Library of Medicine (US). http://clinicaltrials.gov/ct2/show/NCT00443287 NLM Identifier: NCT00443287. Accessed 31 Mar 2012

  19. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6(7):521–534. doi:10.1038/nrc1910

    Article  PubMed  CAS  Google Scholar 

  20. Kashiwagi S, Tsukada K, Xu L et al (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med 14(3):255–257. doi:10.1038/nm1730

    Article  PubMed  CAS  Google Scholar 

  21. Calabrese V, Mancuso C, Calvani M et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775. doi:10.1038/nrn2214

    Article  PubMed  CAS  Google Scholar 

  22. Olshevskaya EV, Ermilov AN, Dizhoor AM (2002) Factors that affect regulation of cGMP synthesis in vertebrate photoreceptors and their genetic link to human retinal degeneration. Mol Cell Biochem 230(1–2):139–147. doi:10.1023/A:1014248208584

    Article  PubMed  CAS  Google Scholar 

  23. Jaumann M, Dettling J, Gubelt M et al (2012) cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. Nat Med 18(2):252–259. doi:10.1038/nm.2634

    Article  PubMed  CAS  Google Scholar 

  24. Fischmeister R, Castro LR, Abi-Gerges A et al (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828. doi:10.1161/01.RES.0000246118.98832.04

    Article  PubMed  CAS  Google Scholar 

  25. Castro LR, Verde I, Cooper DM et al (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113(18):2221–2228. doi:10.1161/CIRCULATIONAHA.105.599241

    Article  PubMed  CAS  Google Scholar 

  26. Piggott LA, Hassell KA, Berkova Z et al (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128(1):3–14. doi:10.1085/jgp.200509403

    Article  PubMed  CAS  Google Scholar 

  27. Nikolaev VO, Lohse MJ (2009) Novel techniques for real-time monitoring of cGMP in living cells. Handb Exp Pharmacol 191:229–243. doi:10.1007/978-3-540-68964-5_11

    Article  PubMed  CAS  Google Scholar 

  28. Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33(6):166–175. doi:10.1007/bf00585226

    Article  Google Scholar 

  29. Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94(7):866–873. doi:10.1161/01.RES.0000123825.83803.CD

    Article  PubMed  CAS  Google Scholar 

  30. Nausch LW, Ledoux J, Bonev AD et al (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105(1):365–370. doi:10.1073/pnas.0710387105

    Article  PubMed  CAS  Google Scholar 

  31. Russwurm M, Mullershausen F, Friebe A et al (2007) Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. Biochem J 407(1):69–77. doi:10.1042/BJ20070348

    Article  PubMed  CAS  Google Scholar 

  32. Niino Y, Hotta K, Oka K (2009) Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS One 4(6):e6036. doi:10.1371/journal.pone.0006036

    Article  PubMed  Google Scholar 

  33. Niino Y, Hotta K, Oka K (2010) Blue fluorescent cGMP sensor for multiparameter fluorescence imaging. PLoS One 5(2):e9164. doi:10.1371/journal.pone.0009164

    Article  PubMed  Google Scholar 

  34. Lemke EA, Schultz C (2011) Principles for designing fluorescent sensors and reporters. Nat Chem Biol 7(8):480–483. doi:10.1038/nchembio.620

    Article  PubMed  CAS  Google Scholar 

  35. Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363. doi:10.1007/978-1-59745-471-1_18

    Article  PubMed  CAS  Google Scholar 

  36. Gesellchen F, Stangherlin A, Surdo N et al (2011) Measuring spatiotemporal dynamics of cyclic AMP signaling in real-time using FRET-based biosensors. Methods Mol Biol 746:297–316. doi:10.1007/978-1-61779-126-0_16

    Article  PubMed  CAS  Google Scholar 

  37. Rasband WS (1997–2012) ImageJ. U. S. National Institutes of Health, Bethesda, MD, USA. http://imagej.nih.gov/ij/

  38. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415. doi:10.1038/nprot.2006.356

    Article  PubMed  CAS  Google Scholar 

  39. Shelly M, Lim BK, Cancedda L et al (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327(5965):547–552. doi:10.1126/science.1179735

    Article  PubMed  CAS  Google Scholar 

  40. von Hayn K, Werthmann RC, Nikolaev VO et al (2010) Gq-mediated Ca2+ signals inhibit adenylyl cyclases 5/6 in vascular smooth muscle cells. Am J Physiol Cell Physiol 298(2):C324–C332. doi:10.1152/ajpcell.00197.2009

    Article  Google Scholar 

  41. Zhang J, Chen L, Raina H et al (2010) In vivo assessment of artery smooth muscle [Ca2+]i and MLCK activation in FRET-based biosensor mice. Am J Physiol Heart Circ Physiol 299(3):H946–H956. doi:10.1152/ajpheart.00359.2010

    Article  PubMed  CAS  Google Scholar 

  42. He TC, Zhou S, da Costa LT et al (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95(5):2509–2514

    Article  PubMed  CAS  Google Scholar 

  43. Luo J, Deng ZL, Luo X et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2(5):1236–1247. doi:10.1038/nprot.2007.135

    Article  PubMed  CAS  Google Scholar 

  44. Brewer GJ, Torricelli JR, Evege EK et al (1993) Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576. doi:10.1002/jnr.490350513

    Article  PubMed  CAS  Google Scholar 

  45. Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194. doi:10.1074/jbc.M102815200

    Article  PubMed  CAS  Google Scholar 

  46. Sato M, Hida N, Ozawa T et al (2000) Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. Anal Chem 72(24):5918–5924. doi:10.1021/ac0006167

    Article  PubMed  CAS  Google Scholar 

  47. Honda A, Adams SR, Sawyer CL et al (2001) Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA 98(5):2437–2442. doi:10.1073/pnas.051631298

    Article  PubMed  CAS  Google Scholar 

  48. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3(1):23–25. doi:10.1038/nmeth816

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Barbara Birk, Caroline Vollmers, Erika Mannheim, Ursula Krabbe, and Fred Eichhorst for expert technical assistance, Simone Di Giovanni for advice with neuronal cell culture, Gisela Drews and Peter Krippeit-Drews for providing the superfusion chamber, and Kübra Gülmez, Phillip Messer, Annyesha Mohanty, and Christine Wenz for their contributions to cGMP imaging experiments. Special thanks go to Susanne Feil and Lai Wen for reading the manuscript, to Lai Wen for providing transgenic mice for the calibration experiment, to Thomas Ott for microinjection of transgenes into mouse oocytes, and to Lutz Pott, Anke Gallhoff, and Kirsten Bender for introduction to the adenoviral system. We also thank all past and present members of our laboratories for critical discussions and the Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thunemann, M., Fomin, N., Krawutschke, C., Russwurm, M., Feil, R. (2013). Visualization of cGMP with cGi Biosensors. In: Krieg, T., Lukowski, R. (eds) Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, vol 1020. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-459-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-459-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-458-6

  • Online ISBN: 978-1-62703-459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics