Skip to main content

Molecular Pathology of Polyalanine Expansion Disorders: New Perspectives from Mouse Models

  • Protocol
  • First Online:
Book cover Tandem Repeats in Genes, Proteins, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1017))

Abstract

Disease-causing polyalanine (PA) expansion mutations have been identified in nine genes, eight of which encode transcription factors (TFs) with important roles in development. In vitro and cell overexpression studies have shown that expanded PA tracts result in protein misfolding and the formation of aggregates. This feature of PA proteins is reminiscent of the related polyglutamine (PQ) disease proteins, which have been shown to cause disease via a gain-of-function (GOF) mechanism. However, in sharp contrast to PQ disorders, the disease phenotypes associated with PA mutations are more consistent with a LOF and/or mild GOF mechanism, suggesting that their molecular pathology is inherently different to PQ disorders. Elucidating the cellular impact of PA mutations in vivo has been difficult to address as, unlike the late-onset polyglutamine disorders, all PA disorders associated with TF gene mutations are congenital. However, in recent years, significant advances have been made through the analysis of engineered (knock-in) and spontaneous PA mouse models. Here we review these recent findings and propose an updated model of the molecular and cellular mechanism of PA disorders that incorporates both LOF and GOF features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66(4):817–822. doi:0092-8674(91)90125-I [pii]

    Article  PubMed  CAS  Google Scholar 

  2. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1(6):397–400

    Article  PubMed  CAS  Google Scholar 

  3. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108(1):260–265. doi:1013343108 [pii] 10.1073/pnas.1013343108

    Article  PubMed  CAS  Google Scholar 

  4. Bauer PO, Nukina N (2009) The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 110(6):1737–1765. doi:JNC6302 [pii] 10.1111/j.1471-4159.2009.06302.x

    Article  PubMed  CAS  Google Scholar 

  5. Cocquempot O, Brault V, Babinet C, Herault Y (2009) Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly. Genetics 183(1):23–30

    Article  PubMed  CAS  Google Scholar 

  6. Trochet D, de Pontual L, Keren B, Munnich A, Vekemans M, Lyonnet S, Amiel J (2007) Polyalanine expansions might not result from unequal crossing-over. Hum Mutat 28(10):1043–1044

    Article  PubMed  CAS  Google Scholar 

  7. Muragaki Y, Mundlos S, Upton J, Olsen BR (1996) Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272(5261):548–551

    Article  PubMed  CAS  Google Scholar 

  8. Brison N, Tylzanowski P, Debeer P (2011) Limb skeletal malformations—what the HOX is going on? Eur J Med Genet 55(1):1–7. doi:S1769-7212(11)00073-5 [pii] 10.1016/j.ejmg.2011.06.003

    Article  PubMed  Google Scholar 

  9. Goodman FR, Mundlos S, Muragaki Y, Donnai D, Giovannucci-Uzielli ML, Lapi E, Majewski F, McGaughran J, McKeown C, Reardon W, Upton J, Winter RM, Olsen BR, Scambler PJ (1997) Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci USA 94(14):7458–7463

    Article  PubMed  CAS  Google Scholar 

  10. Debeer P, Bacchelli C, Scambler PJ, De Smet L, Fryns JP, Goodman FR (2002) Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13. J Med Genet 39(11):852–856

    Article  PubMed  CAS  Google Scholar 

  11. Innis JW, Mortlock D, Chen Z, Ludwig M, Williams ME, Williams TM, Doyle CD, Shao Z, Glynn M, Mikulic D, Lehmann K, Mundlos S, Utsch B (2004) Polyalanine expansion in HOXA13: three new affected families and the molecular consequences in a mouse model. Hum Mol Genet 13(22):2841–2851

    Article  PubMed  CAS  Google Scholar 

  12. Utsch B, Becker K, Brock D, Lentze MJ, Bidlingmaier F, Ludwig M (2002) A novel stable polyalanine [poly(A)] expansion in the HOXA13 gene associated with hand-foot-genital syndrome: proper function of poly(A)-harbouring transcription factors depends on a critical repeat length? Hum Genet 110(5):488–494. doi:10.1007/s00439-002-0712-8

    Article  PubMed  CAS  Google Scholar 

  13. Miura H, Yanazawa M, Kato K, Kitamura K (1997) Expression of a novel aristaless related homeobox gene ‘Arx’ in the vertebrate telencephalon, diencephalon and floor plate. Mech Dev 65(1–2):99–109

    Article  PubMed  CAS  Google Scholar 

  14. Shoubridge C, Fullston T, Gecz J (2010) ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 31(8):889–900. doi:10.1002/humu.21288

    Article  PubMed  CAS  Google Scholar 

  15. Meguro T, Yoshida Y, Hayashi M, Toyota K, Otagiri T, Mochizuki N, Kishikawa Y, Sasaki A, Hayasaka K (2012) Inheritance of polyalanine expansion mutation of PHOX2B in congenital central hypoventilation syndrome. J Hum Genet 57(5):335–337. doi:jhg201227 [pii] 10.1038/jhg.2012.27

    Article  PubMed  CAS  Google Scholar 

  16. Di Zanni E, Bachetti T, Parodi S, Bocca P, Prigione I, Di Lascio S, Fornasari D, Ravazzolo R, Ceccherini I (2012) In vitro drug treatments reduce the deleterious effects of aggregates containing polyAla expanded PHOX2B proteins. Neurobiol Dis 45(1):508–518. doi:S0969-9961(11)00317-2 [pii] 10.1016/j.nbd.2011.09.007

    Article  PubMed  Google Scholar 

  17. Matera I, Bachetti T, Puppo F, Di Duca M, Morandi F, Casiraghi GM, Cilio MR, Hennekam R, Hofstra R, Schober JG, Ravazzolo R, Ottonello G, Ceccherini I (2004) PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J Med Genet 41(5):373–380

    Article  PubMed  CAS  Google Scholar 

  18. Patwari PP, Carroll MS, Rand CM, Kumar R, Harper R, Weese-Mayer DE (2010) Congenital central hypoventilation syndrome and the PHOX2B gene: a model of respiratory and autonomic dysregulation. Respir Physiol Neurobiol 173(3):322–335. doi:S1569-9048(10)00231-4 [pii] 10.1016/j.resp.2010.06.013

    Article  PubMed  CAS  Google Scholar 

  19. Trochet D, Hong SJ, Lim JK, Brunet JF, Munnich A, Kim KS, Lyonnet S, Goridis C, Amiel J (2005) Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction. Hum Mol Genet 14(23):3697–3708. doi:ddi401 [pii] 10.1093/hmg/ddi401

    Article  PubMed  CAS  Google Scholar 

  20. Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130(26):6635–6642

    Article  PubMed  CAS  Google Scholar 

  21. Alatzoglou KS, Kelberman D, Cowell CT, Palmer R, Arnhold IJ, Melo ME, Schnabel D, Grueters A, Dattani MT (2011) Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J Clin Endocrinol Metab 96(4):E685–E690

    Article  PubMed  CAS  Google Scholar 

  22. Burkitt Wright EM, Perveen R, Clayton PE, Hall CM, Costa T, Procter AM, Giblin CA, Donnai D, Black GC (2009) X-linked isolated growth hormone deficiency: expanding the phenotypic spectrum of SOX3 polyalanine tract expansions. Clin Dysmorphol 18(4):218–221

    Article  PubMed  Google Scholar 

  23. Laumonnier F, Ronce N, Hamel BC, Thomas P, Lespinasse J, Raynaud M, Paringaux C, Van Bokhoven H, Kalscheuer V, Fryns JP, Chelly J, Moraine C, Briault S (2002) Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet 71(6):1450–1455

    Article  PubMed  CAS  Google Scholar 

  24. Woods KS, Cundall M, Turton J, Rizotti K, Mehta A, Palmer R, Wong J, Chong WK, Al-Zyoud M, El-Ali M, Otonkoski T, Martinez-Barbera JP, Thomas PQ, Robinson IC, Lovell-Badge R, Woodward KJ, Dattani MT (2005) Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet 76(5):833–849

    Article  PubMed  CAS  Google Scholar 

  25. Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R (2004) SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 36(3):247–255

    Article  PubMed  CAS  Google Scholar 

  26. Paulussen AD, Schrander-Stumpel CT, Tserpelis DC, Spee MK, Stegmann AP, Mancini GM, Brooks AS, Collee M, Maat-Kievit A, Simon ME, van Bever Y, Stolte-Dijkstra I, Kerstjens-Frederikse WS, Herkert JC, van Essen AJ, Lichtenbelt KD, van Haeringen A, Kwee ML, Lachmeijer AM, Tan-Sindhunata GM, van Maarle MC, Arens YH, Smeets EE, de Die-Smulders CE, Engelen JJ, Smeets HJ, Herbergs J (2010) The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet 18(9):999–1005. doi:ejhg201070 [pii] 10.1038/ejhg.2010.70

    Article  PubMed  CAS  Google Scholar 

  27. Brown L, Paraso M, Arkell R, Brown S (2005) In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum Mol Genet 14(3):411–420. doi:ddi037 [pii] 10.1093/hmg/ddi037

    Article  PubMed  CAS  Google Scholar 

  28. Sugawara M, Kato N, Tsuchiya T, Motoyama T (2011) RUNX2 expression in developing human bones and various bone tumors. Pathol Int 61(10):565–571. doi:10.1111/j.1440-1827.2011.02706.x

    Article  PubMed  CAS  Google Scholar 

  29. Hansen L, Riis AK, Silahtaroglu A, Hove H, Lauridsen E, Eiberg H, Kreiborg S (2011) RUNX2 analysis of Danish cleidocranial dysplasia families. Clin Genet 79(3):254–263. doi:CGE1458 [pii] 10.1111/j.1399-0004.2010.01458.x

    Article  PubMed  CAS  Google Scholar 

  30. Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu S, Ristaldi MS, Marzella R, Rocchi M, Nicolino M, Lienhardt-Roussie A, Nivelon A, Verloes A, Schlessinger D, Gasparini P, Bonneau D, Cao A, Pilia G (2001) The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27(2):159–166. doi:10.1038/84781

    Article  PubMed  CAS  Google Scholar 

  31. Beysen D, De Jaegere S, Amor D, Bouchard P, Christin-Maitre S, Fellous M, Touraine P, Grix AW, Hennekam R, Meire F, Oyen N, Wilson LC, Barel D, Clayton-Smith J, de Ravel T, Decock C, Delbeke P, Ensenauer R, Ebinger F, Gillessen-Kaesbach G, Hendriks Y, Kimonis V, Laframboise R, Laissue P, Leppig K, Leroy BP, Miller DT, Mowat D, Neumann L, Plomp A, Van Regemorter N, Wieczorek D, Veitia RA, De Paepe A, De Baere E (2008) Identification of 34 novel and 56 known FOXL2 mutations in patients with blepharophimosis syndrome. Hum Mutat 29(11):E205–E219. doi:10.1002/humu.20819

    Article  PubMed  Google Scholar 

  32. Brais B, Bouchard JP, Xie YG, Rochefort DL, Chretien N, Tome FM, Lafreniere RG, Rommens JM, Uyama E, Nohira O, Blumen S, Korczyn AD, Heutink P, Mathieu J, Duranceau A, Codere F, Fardeau M, Rouleau GA (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18(2):164–167. doi:10.1038/ng0298-164

    Article  PubMed  CAS  Google Scholar 

  33. Blumen SC, Brais B, Korczyn AD, Medinsky S, Chapman J, Asherov A, Nisipeanu P, Codere F, Bouchard JP, Fardeau M, Tome FM, Rouleau GA (1999) Homozygotes for oculopharyngeal muscular dystrophy have a severe form of the disease. Ann Neurol 46(1):115–118

    Article  PubMed  CAS  Google Scholar 

  34. Albrecht A, Mundlos S (2005) The other trinucleotide repeat: polyalanine expansion disorders. Curr Opin Genet Dev 15(3):285–293

    Article  PubMed  CAS  Google Scholar 

  35. Lavoie H, Debeane F, Trinh QD, Turcotte JF, Corbeil-Girard LP, Dicaire MJ, Saint-Denis A, Page M, Rouleau GA, Brais B (2003) Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains. Hum Mol Genet 12(22):2967–2979

    Article  PubMed  CAS  Google Scholar 

  36. Karlin S, Chen C, Gentles AJ, Cleary M (2002) Associations between human disease genes and overlapping gene groups and multiple amino acid runs. Proc Natl Acad Sci USA 99(26):17008–17013. doi:10.1073/pnas.262658799262658799 [pii]

    Article  PubMed  CAS  Google Scholar 

  37. Mojsin M, Kovacevic-Grujicic N, Krstic A, Popovic J, Milivojevic M, Stevanovic M (2010) Comparative analysis of SOX3 protein orthologs: expansion of homopolymeric amino acid tracts during vertebrate evolution. Biochem Genet 48(7–8):612–623. doi:10.1007/s10528-010-9343-2

    Article  PubMed  CAS  Google Scholar 

  38. Giri K, Bhattacharyya NP, Basak S (2007) pH-dependent self-assembly of polyalanine peptides. Biophys J 92(1):293–302. doi:S0006-3495(07)70827-5 [pii] 10.1529/biophysj.106.091769

    Article  PubMed  CAS  Google Scholar 

  39. Shinchuk LM, Sharma D, Blondelle SE, Reixach N, Inouye H, Kirschner DA (2005) Poly-(L-alanine) expansions form core beta-sheets that nucleate amyloid assembly. Proteins 61(3):579–589. doi:10.1002/prot.20536

    Article  PubMed  CAS  Google Scholar 

  40. Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 101(46):16180–16185. doi:0407273101 [pii] 10.1073/pnas.0407273101

    Article  PubMed  CAS  Google Scholar 

  41. Nojima J, Oma Y, Futai E, Sasagawa N, Kuroda R, Turk B, Ishiura S (2009) Biochemical analysis of oligomerization of expanded polyalanine repeat proteins. J Neurosci Res 87(10):2290–2296. doi:10.1002/jnr.22052

    Article  PubMed  CAS  Google Scholar 

  42. Rankin J, Wyttenbach A, Rubinsztein DC (2000) Intracellular green fluorescent protein-polyalanine aggregates are associated with cell death. Biochem J 348(Pt 1):15–19

    Article  PubMed  CAS  Google Scholar 

  43. Albrecht AN, Kornak U, Boddrich A, Suring K, Robinson PN, Stiege AC, Lurz R, Stricker S, Wanker EE, Mundlos S (2004) A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet 13(20):2351–2359

    Article  PubMed  CAS  Google Scholar 

  44. Bachetti T, Matera I, Borghini S, Di Duca M, Ravazzolo R, Ceccherini I (2005) Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet 14(13):1815–1824. doi:ddi188 [pii] 10.1093/hmg/ddi188

    Article  PubMed  CAS  Google Scholar 

  45. Caburet S, Demarez A, Moumne L, Fellous M, De Baere E, Veitia RA (2004) A recurrent polyalanine expansion in the transcription factor FOXL2 induces extensive nuclear and cytoplasmic protein aggregation. J Med Genet 41(12):932–936. doi:41/12/932 [pii] 10.1136/jmg.2004.024356

    Article  PubMed  CAS  Google Scholar 

  46. Nasrallah IM, Minarcik JC, Golden JA (2004) A polyalanine tract expansion in Arx forms intranuclear inclusions and results in increased cell death. J Cell Biol 167(3):411–416

    Article  PubMed  CAS  Google Scholar 

  47. Wong J, Farlie P, Holbert S, Lockhart P, Thomas PQ (2007) Polyalanine expansion mutations in the X-linked hypopituitarism gene SOX3 result in aggresome formation and impaired transactivation. Front Biosci 12:2085–2095

    Article  PubMed  CAS  Google Scholar 

  48. Abu-Baker A, Messaed C, Laganiere J, Gaspar C, Brais B, Rouleau GA (2003) Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum Mol Genet 12(20):2609–2623. doi:10.1093/hmg/ddg293 ddg293 [pii]

    Article  PubMed  CAS  Google Scholar 

  49. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858. doi:10.1126/science.1068408 295/5561/1852 [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Villavicencio-Lorini P, Kuss P, Friedrich J, Haupt J, Farooq M, Turkmen S, Duboule D, Hecht J, Mundlos S (2010) Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation. J Clin Invest 120(6):1994–2004. doi:41554 [pii] 10.1172/JCI41554

    Article  PubMed  CAS  Google Scholar 

  51. Raz V, Abraham T, van Zwet EW, Dirks RW, Tanke HJ, van der Maarel SM (2011) Reversible aggregation of PABPN1 pre-inclusion structures. Nucleus 2(3):208–218. doi:10.4161/nucl.2.3.15736 1949-1034-2-3-8 [pii]

    Article  PubMed  Google Scholar 

  52. Tavanez JP, Calado P, Braga J, Lafarga M, Carmo-Fonseca M (2005) In vivo aggregation properties of the nuclear poly(A)-binding protein PABPN1. RNA 11(5):752–762

    Article  PubMed  CAS  Google Scholar 

  53. Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kuhn U, Menzies FM, Oude Vrielink JA, Bos AJ, Drost J, Rooijers K, Rubinsztein DC, Agami R (2012) The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149(3):538–553. doi:S0092-8674(12)00398-4 [pii] 10.1016/j.cell.2012.03.022

    Article  PubMed  CAS  Google Scholar 

  54. Davies JE, Sarkar S, Rubinsztein DC (2008) Wild-type PABPN1 is anti-apoptotic and reduces toxicity of the oculopharyngeal muscular dystrophy mutation. Hum Mol Genet 17(8):1097–1108. doi:ddm382 [pii] 10.1093/hmg/ddm382

    Article  PubMed  CAS  Google Scholar 

  55. Bruneau S, Johnson KR, Yamamoto M, Kuroiwa A, Duboule D (2001) The mouse Hoxd13(spdh) mutation, a polyalanine expansion similar to human type II synpolydactyly (SPD), disrupts the function but not the expression of other Hoxd genes. Dev Biol 237(2):345–353

    Article  PubMed  CAS  Google Scholar 

  56. Poirier K, Eisermann M, Caubel I, Kaminska A, Peudonnier S, Boddaert N, Saillour Y, Dulac O, Souville I, Beldjord C, Lascelles K, Plouin P, Chelly J, Bahi-Buisson N (2008) Combination of infantile spasms, non-epileptic seizures and complex movement disorder: a new case of ARX-related epilepsy. Epilepsy Res 80(2–3):224–228. doi:S0920-1211(08)00085-5 [pii] 10.1016/j.eplepsyres.2008.03.019

    Article  PubMed  Google Scholar 

  57. Kitamura K, Itou Y, Yanazawa M, Ohsawa M, Suzuki-Migishima R, Umeki Y, Hohjoh H, Yanagawa Y, Shinba T, Itoh M, Nakamura K, Goto Y (2009) Three human ARX mutations cause the lissencephaly-like and mental retardation with epilepsy-like pleiotropic phenotypes in mice. Hum Mol Genet 18(19):3708–3724

    Article  PubMed  CAS  Google Scholar 

  58. Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD Jr, Noebels JL (2009) A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10  +  7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 29(27):8752–8763

    Article  PubMed  CAS  Google Scholar 

  59. Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17(20):2591–2603. doi:10.1101/gad.269003 17/20/2591 [pii]

    Article  PubMed  CAS  Google Scholar 

  60. Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32(3):359–369. doi:10.1038/ng1009 ng1009 [pii]

    Article  PubMed  CAS  Google Scholar 

  61. Amiel J, Dubreuil V, Ramanantsoa N, Fortin G, Gallego J, Brunet JF, Goridis C (2009) PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol 168(1–2):125–132. doi:S1569-9048(09)00060-3 [pii] 10.1016/j.resp.2009.03.005

    Article  PubMed  CAS  Google Scholar 

  62. Benailly HK, Lapierre JM, Laudier B, Amiel J, Attie T, De Blois MC, Vekemans M, Romana SP (2003) PMX2B, a new candidate gene for Hirschsprung’s disease. Clin Genet 64(3):204–209. doi:105 [pii]

    Article  PubMed  CAS  Google Scholar 

  63. Dubreuil V, Ramanantsoa N, Trochet D, Vaubourg V, Amiel J, Gallego J, Brunet JF, Goridis C (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci USA 105(3):1067–1072

    Article  PubMed  CAS  Google Scholar 

  64. Ramanantsoa N, Hirsch MR, Thoby-Brisson M, Dubreuil V, Bouvier J, Ruffault PL, Matrot B, Fortin G, Brunet JF, Gallego J, Goridis C (2011) Breathing without CO(2) chemosensitivity in conditional Phox2b mutants. J Neurosci 31(36):12880–12888. doi:31/36/12880 [pii] 10.1523/JNEUROSCI.1721-11.2011

    Article  PubMed  CAS  Google Scholar 

  65. Di Zanni E, Bachetti T, Parodi S, Bocca P, Prigione I, Di Lascio S, Fornasari D, Ravazzolo R, Ceccherini I (2011) In vitro drug treatments reduce the deleterious effects of aggregates containing polyAla expanded PHOX2B proteins. Neurobiol Dis 45(1):508–518. doi:S0969-9961(11)00317-2 [pii] 10.1016/j.nbd.2011.09.007

    Article  PubMed  Google Scholar 

  66. Davies JE, Wang L, Garcia-Oroz L, Cook LJ, Vacher C, O’Donovan DG, Rubinsztein DC (2005) Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice. Nat Med 11(6):672–677. doi:nm1242 [pii] 10.1038/nm1242

    Article  PubMed  CAS  Google Scholar 

  67. Davies JE, Sarkar S, Rubinsztein DC (2006) Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet 15(1):23–31. doi:ddi422 [pii] 10.1093/hmg/ddi422

    Article  PubMed  CAS  Google Scholar 

  68. Dolle P, Dierich A, LeMeur M, Schimmang T, Schuhbaur B, Chambon P, Duboule D (1993) Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75(3):431–441. doi:0092-8674(93)90378-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  69. Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P (1996) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122(10):2997–3011

    PubMed  CAS  Google Scholar 

  70. Beguin S, Crepel V, Aniksztejn L, Becq H, Pelosi B, Pallesi-Pocachard E, Bouamrane L, Pasqualetti M, Kitamura K, Cardoso C, Represa A (2012) An epilepsy-related ARX polyalanine expansion modifies glutamatergic neurons excitability and morphology without affecting GABAergic neurons development. Cereb Cortex. doi:bhs138 [pii] 10.1093/cercor/bhs138

    Google Scholar 

  71. Nasrallah MP, Cho G, Simonet JC, Putt ME, Kitamura K, Golden JA (2012) Differential effects of a polyalanine tract expansion in Arx on neural development and gene expression. Hum Mol Genet 21(5):1090–1098. doi:ddr538 [pii] 10.1093/hmg/ddr538

    Article  PubMed  CAS  Google Scholar 

  72. Warr N, Powles-Glover N, Chappell A, Robson J, Norris D, Arkell RM (2008) Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet 17(19):2986–2996. doi:ddn197 [pii] 10.1093/hmg/ddn197

    Article  PubMed  CAS  Google Scholar 

  73. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764. doi:S0092-8674(00)80258-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  74. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771. doi:S0092-8674(00)80259-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  75. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13(11):1171–1181. doi:10.1093/hmg/ddh124 ddh124 [pii]

    Article  PubMed  CAS  Google Scholar 

  76. Hughes J, Piltz S, Rogers N, McAninch D, Rowley L, Thomas P (2013) Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for x linked hypopituitarism. PLoS Genet. 9(3):e1003290. doi:10.1371/journal.pgen.1003290. Epub 2013 Mar 7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hughes, J.N., Thomas, P.Q. (2013). Molecular Pathology of Polyalanine Expansion Disorders: New Perspectives from Mouse Models. In: Hatters, D., Hannan, A. (eds) Tandem Repeats in Genes, Proteins, and Disease. Methods in Molecular Biology, vol 1017. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-438-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-438-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-437-1

  • Online ISBN: 978-1-62703-438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics