Skip to main content

Pluripotent Hybrid Stem Cells from Transgenic Huntington’s Disease Monkey

  • Protocol
  • First Online:
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1010))

Abstract

Huntington’s disease (HD) is a devastating disease that currently has no cure. Transgenic HD monkeys have developed key neuropathological and cognitive behavioral impairments similar to HD patients. Thus, pluripotent stem cells derived from transgenic HD monkeys could be a useful comparative model for clarifying HD pathogenesis and developing novel therapeutic approaches, which could be validated in HD monkeys. In order to create personal pluripotent stem cells from HD monkeys, here we present a tetraploid technique for deriving pluripotent hybrid HD monkey stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies S, Ramsden DB (2001) Huntington’s disease. Mol Pathol 54:409–413

    PubMed  CAS  Google Scholar 

  2. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  PubMed  CAS  Google Scholar 

  3. Persichetti F, Ambrose CM, Ge P et al (1995) Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol Med 1:374–383

    PubMed  CAS  Google Scholar 

  4. Snell RG, MacMillan JC, Cheadle JP et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397

    Article  PubMed  CAS  Google Scholar 

  5. Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  6. Sapp E, Schwarz C, Chase K et al (1997) Huntingtin localization in brains of normal and Huntington’s disease patients. Ann Neurol 42:604–612

    Article  PubMed  CAS  Google Scholar 

  7. Becher MW, Kotzuk JA, Sharp AH et al (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 4:387–397

    Article  PubMed  CAS  Google Scholar 

  8. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  PubMed  CAS  Google Scholar 

  9. Paulson HL, Perez MK, Trottier Y et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    Article  PubMed  CAS  Google Scholar 

  10. Ross CA (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19:1147–1150

    Article  PubMed  CAS  Google Scholar 

  11. Laforet GA, Sapp E, Chase K et al (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J Neurosci 21:9112–9123

    PubMed  CAS  Google Scholar 

  12. Herlyn H, Zischler H (2006) Primate genomes. Genome Dyn 2:17–32

    Article  PubMed  CAS  Google Scholar 

  13. Holzer M, Craxton M, Jakes R et al (2004) Tau gene (MAPT) sequence variation among primates. Gene 341:313–322

    Article  PubMed  CAS  Google Scholar 

  14. Osada N, Hashimoto K, Kameoka Y et al (2008) Large-scale analysis of Macaca fascicularis transcripts and inference of genetic divergence between M. fascicularis and M. mulatta. BMC Genomics 9:90

    Article  PubMed  Google Scholar 

  15. Yang SH, Cheng PH, Banta H et al (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    Article  PubMed  CAS  Google Scholar 

  16. Bates GP, Mangiarini L, Wanker EE et al (1998) Polyglutamine expansion and Huntington’s disease. Biochem Soc Trans 26:471–475

    PubMed  CAS  Google Scholar 

  17. Li S, Li XJ (2006) Multiple pathways contribute to the pathogenesis of Huntington disease. Mol Neurodegener 1:19

    Article  PubMed  Google Scholar 

  18. Li SH, Schilling G, Young WS et al (1993) Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11:985–993

    Article  PubMed  CAS  Google Scholar 

  19. Menalled LB, Sison JD, Wu Y et al (2002) Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J Neurosci 22:8266–8276

    PubMed  CAS  Google Scholar 

  20. Rubinsztein DC (2002) Lessons from animal models of Huntington’s disease. Trends Genet 18:202–209

    Article  PubMed  CAS  Google Scholar 

  21. Sathasivam K, Hobbs C, Turmaine M et al (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813–822

    Article  PubMed  CAS  Google Scholar 

  22. Wang CE, Tydlacka S, Orr AL et al (2008) Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 17:2738–2751

    Article  PubMed  CAS  Google Scholar 

  23. Ciammola A, Sassone J, Alberti L et al (2006) Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington’s disease subjects. Cell Death Differ 13:2068–2078

    Article  PubMed  CAS  Google Scholar 

  24. Desai UA, Pallos J, Ma AA et al (2006) Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum Mol Genet 15:2114–2124

    Article  PubMed  CAS  Google Scholar 

  25. Outeiro TF, Giorgini F (2006) Yeast as a drug discovery platform in Huntington’s and Parkinson’s diseases. Biotechnol J 1:258–269

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X, Smith DL, Meriin AB et al (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 102:892–897

    Article  PubMed  CAS  Google Scholar 

  27. Mateizel I, De Temmerman N, Ullmann U et al (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21:503–511

    Article  PubMed  CAS  Google Scholar 

  28. Zeitlin S, Liu JP, Chapman DL et al (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11:155–163

    Article  PubMed  CAS  Google Scholar 

  29. Laowtammathron C, Cheng E, Cheng PH et al (2010) Monkey hybrid stem cells develop cellular features of Huntington’s disease. BMC Cell Biol 11:12

    Article  PubMed  Google Scholar 

  30. Bavister BD, Leibfried ML, Lieberman G (1983) Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod 28:235–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant 2R24RR018827 and Atlanta Clinical & Translational Science Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Laowtammathron, C., Chan, A.W.S. (2013). Pluripotent Hybrid Stem Cells from Transgenic Huntington’s Disease Monkey. In: Kohwi, Y., McMurray, C. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology, vol 1010. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-411-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-411-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-410-4

  • Online ISBN: 978-1-62703-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics