Skip to main content

Multidimensional Protein Identification Technology for Direct-Tissue Proteomics of Heart

  • Protocol
  • First Online:
Heart Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1005))

Abstract

Multidimensional protein identification technology (MudPIT) is an invaluable approach to identify proteins at large-scale level. Here, we describe a procedure of investigation to functional characterize the proteomic profile of complex samples such as those from cardiac tissues. In particular, we focus on the main steps concerning sample preparation, MudPIT analysis, tandem mass spectra processing, and biomarker discovery using label-free approaches. Finally, we report a data-derived systems biology approach to identify groups of proteins of over-, under-, and normal expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ly L, Wasinger VC (2011) Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics 11:513–534

    Article  PubMed  CAS  Google Scholar 

  2. Nilsson T, Mann M, Aebersold R et al (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7:681

    Article  PubMed  CAS  Google Scholar 

  3. Horgan GW (2007) Sample size and replication in 2D gel electrophoresis studies. J Proteome Res 6:2884–2887

    Article  PubMed  CAS  Google Scholar 

  4. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: Approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  5. Braun RJ, Kinkl N, Beer M et al (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389:1033–1045

    Article  PubMed  CAS  Google Scholar 

  6. Mauri PL, Scigelova M (2009) Multidimensional protein identification technology for clinical proteomic analysis. Clin Chem Lab Med 47:636–646

    Article  PubMed  CAS  Google Scholar 

  7. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  8. Comunian C, Rusconi F, De Palma A et al (2011) A comparative MudPIT analysis identifies different expression profiles in heart compartments. Proteomics 11:2320–2328

    Article  PubMed  CAS  Google Scholar 

  9. Mauri P, Deho’ G (2008) A proteomic approach to the analysis of RNA degradosome composition in Escherichia coli. Methods Enzymol 447:99–117

    Article  PubMed  CAS  Google Scholar 

  10. Park SK, Venable JD, Xu T et al (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5:319–322

    PubMed  CAS  Google Scholar 

  11. Di Silvestre, D., Daminelli, S., Brunetti, P. et al. (2010) Bioinformatics tools for mass spectrometry-based proteomics analysis. Reviews in Pharmaceutical & Biomedical Analysis Bentham eBooks, pp. 30–51

    Google Scholar 

  12. Mauri P, Scarpa A, Nascimbeni AC et al (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB 19:1125–1127

    CAS  Google Scholar 

  13. Regonesi ME, Del Favero M, Basilico F et al (2006) Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88:151–161

    Article  PubMed  CAS  Google Scholar 

  14. Simioniuc A, Campan M, Lionetti V et al (2011) Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study. Cardiovasc Res 90:546–556

    Article  PubMed  CAS  Google Scholar 

  15. Sokal RR, Rohlf FJ (1994) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  16. Griss J, Côté RG, Gerner C et al (2011) Published and Perished? The Influence of the Searched Protein Database on the Long-Term Storage of Proteomics Data. Mol Cell Proteomics 10:M111.008490

    Article  PubMed  Google Scholar 

  17. Nesvizhskii AI, Keller A, Kolker E et al (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  18. Zhang B, VerBerkmoes NC, Michael A et al (2006) Detecting Differential and Correlated Protein Expression in Label-Free Shotgun Proteomics. J Proteome Res 5:2909–2918

    Article  PubMed  CAS  Google Scholar 

  19. Wang G, Wu WW, Zhang Z et al (2009) Decoy Methods for Assessing False Positives and False Discovery Rates in Shotgun Proteomics. Anal Chem 81:146–159

    Article  PubMed  CAS  Google Scholar 

  20. Carvalho PC, Hewel J, Barbosa VC et al (2008) Identifying differences in protein expression levels by spectral counting and feature selection. Genet Mol Res 7:342–356

    Article  PubMed  CAS  Google Scholar 

  21. Carvalho PC, Fischer JS, Chen EI et al (2008) PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics 9:316–329

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CARIPLO Foundation (2008.2504, 2007.5312 and project - Proteomic platform, Operational Network for Biomedicine Excellence in Lombardy). The authors thank Marta G. Bitonti for MAProMA software.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Di Silvestre, D., Brambilla, F., Mauri, P.L. (2013). Multidimensional Protein Identification Technology for Direct-Tissue Proteomics of Heart. In: Vivanco, F. (eds) Heart Proteomics. Methods in Molecular Biology, vol 1005. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-386-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-386-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-385-5

  • Online ISBN: 978-1-62703-386-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics