Skip to main content

Nanotechnology with S-Layer Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 996))

Abstract

Nanosciences are distinguished by the cross-fertilization of biology, chemistry, material sciences, and solid-state physics and hence open up a great variety of new opportunities for innovation. The technological utilization of self-assembly systems, wherein molecules spontaneously associate under equilibrium conditions into reproducible supramolecular aggregates, is one key challenge in nanosciences for life and nonlife science applications. The attractiveness of such processes is due to their ability to build uniform, ultrasmall functional units and the possibility to exploit such structures at meso- and macroscopic scale very frequently by newly developed techniques and methods. By the utilization of crystalline bacterial cell-surface proteins (S-layer proteins) innovative approaches for the assembly of supramolecular structures and devices with dimensions of a few to tens of nanometers have been developed. S-layers have proven to be particularly suited as building blocks in a molecular construction kit involving all major classes of biological molecules. The controlled immobilization of biomolecules in an ordered fashion on solid substrates and their controlled confinement in definite areas of nanometer dimensions are key requirements for many applications including the development of bioanalytical sensors, biochips, molecular electronics, biocompatible surfaces, and signal processing between functional membranes, cells, and integrated circuits.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sleytr UB, Messner P, Pum D et al. (1996) Crystalline bacterial cell surface proteins. Academic Press, R.G. Landes Company, Austin, USA

    Google Scholar 

  2. Sleytr UB, Huber C, Pum D et al (2007) Nanobiotechnology with S-layer proteins. FEMS Microbiol Lett 267:131–144

    Article  PubMed  CAS  Google Scholar 

  3. Sleytr UB, Egelseer EM, Ilk N et al (2007) S-layers as basic building block for a molecular construction kit. FEBS J 274:323–334

    Article  PubMed  CAS  Google Scholar 

  4. Messner P, Schäffer C, Egelseer EM et al (2010) Occurrence, structure, chemistry, genetics, morphogenesis, and functions of S-layers. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall compounds—structure and biochemistry. Springer, Berlin, Germany

    Google Scholar 

  5. Sleytr UB, Messner P (2009) Crystalline bacterial cell surface layers (S-layers). In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Elsevier, Oxford

    Google Scholar 

  6. Sleytr UB (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly and function. Int Rev Cytol 53:1–64

    Article  PubMed  CAS  Google Scholar 

  7. Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  PubMed  CAS  Google Scholar 

  8. Pum D, Sára M, Sleytr UB (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol 171:5296–5303

    PubMed  CAS  Google Scholar 

  9. Sára M, Pum D, Sleytr UB (1992) Permeability and charge-dependent adsorption of the S-layer lattice from Bacillus coagulans E38-66. J Bacteriol 174:3487–3493

    PubMed  Google Scholar 

  10. Moreno-Flores S, Kasry A, Butt HJ et al (2008) From native to non-native two-dimensional protein lattices through underlying hydrophilic/hydrophobic nanoprotrusions. Angew Chem Int Ed 47:4707–4710

    Article  CAS  Google Scholar 

  11. Messner P, Pum D, Sleytr UB (1986) Characterization of the ultrastructure and the self assembly of the surface layer (S-layer) of Bacillus stearothermophilus strain NRS 2004/3a. J Ultrastruct Mol Struct Res 97:73–88

    Article  PubMed  CAS  Google Scholar 

  12. Sára M, Sleytr UB (1987) Charge distribution on the S-layer of Bacillus stearothermophilus NRS l536/3c and the importance of charged groups for morphogenesis and function. J Bacteriol 169:2804–2809

    PubMed  Google Scholar 

  13. Györvary ES, Stein O, Pum D et al (2003) Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J Microsc 212:300–306

    Article  PubMed  Google Scholar 

  14. Diederich A, Sponer C, Pum D et al (1996) Reciprocal influence between the protein and lipid components of a lipid-protein membrane model. Coll Surf B: Biointerfaces 6:335–346

    Article  CAS  Google Scholar 

  15. Sleytr UB, Györvary ES, Pum D (2003) Crystallization of S-layer protein lattices on surfaces and interfaces. Prog Organ Coat 47:279–287

    Article  CAS  Google Scholar 

  16. Pum D, Sàra M, Schuster B et al (2006) Bacterial surface layer proteins: a simple but versatile biological self-assembly system in nature. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Berlin, Heidelberg, Germany

    Google Scholar 

  17. Lopez AE, Moreno-Flores S, Pum D et al (2010) Surface dependence of protein nanocrystal formation. Small 6:396–403

    Article  PubMed  CAS  Google Scholar 

  18. Pum D, Tang J, Hinterdorfer P et al (2010) S-layer protein lattices studied by scanning force microscopy. In: Kumar CSSR (ed) Nanomaterials for the life sciences, vol. 7. Biomimetic and bioinspired nanomaterials. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  19. Sleytr UB (1975) Heterologous reattachement of regular arrays of glycoproteins on bacterial surfaces. Nature 257:400–402

    Article  PubMed  CAS  Google Scholar 

  20. Pum D, Sleytr UB (2009) Protein-based nanobioelectronics. In: Offenhäusser A, Rinaldi R (eds) Nanobioelectronics for electronics, biology, and medicine. Springer, Berlin, Germany

    Google Scholar 

  21. Sleytr UB, Egelseer EM, Ilk N et al (2010) Nanobiotechnological applications of S-layers. In: König H, Claus H, Varma A (eds) Prokaryotic cell wall components—structure and biochemistry. Springer, Heidelberg, Germany

    Google Scholar 

  22. Egelseer EM, Ilk N, Pum D et al (2010) Nanobiotechnological applications of S-layers. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Weinheim, Germany

    Google Scholar 

  23. Ilk N, Egelseer EM, Ferner-Ortner J et al (2008) Surfaces functionalized with self-assembling S-layer fusion proteins for nanobiotechnological applications. Colloids Surf A: Physicochem Eng Aspects 321:163–167

    Article  CAS  Google Scholar 

  24. Sleytr UB, Messner P, Pum D et al (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chemie Int Ed 38:1034–1054

    Article  CAS  Google Scholar 

  25. Sleytr UB, Sára M, Pum D (2000) Crystalline bacterial cell surface layers (S-layers): a versatile self-assembly system. In: Ciferri A (ed) Supramolecular polymerization Marcel Dekker. Basel, New York

    Google Scholar 

  26. Sleytr UB, Sára M, Pum D et al (2001) Molecular nanotechnology and nanobiotechnology with two-dimensional protein crystals (S-layers). In: Rosoff M (ed) Nano-surface chemistry. Marcel Dekker, New York, Basel

    Google Scholar 

  27. Sleytr UB, Sára M, Pum D et al (2003) Self assembly protein systems: microbial S-layers. In: Steinbüchel A, Fahnestock S (eds) Biopolymers, vol 7. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  28. Sleytr UB, Sára M, Pum D et al (2005) Crystalline bacterial cell surface layers (S-layers): a versatile self-assembly system. In: Ciferri A (ed) Supramolecular polymers, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  29. Sára M, Egelseer EM, Huber C et al (2006) S-layer proteins: potential applications in nano(bio)technology. In: Rehm B (ed) Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures. Horizon Scientific Press, Hethersett, Norwich, UK

    Google Scholar 

  30. Hanke W, Schlue WR (1993) Planar lipid bilayers: methods and applications. In: Sattelle DB (ed) Biological techniques series. Academic Press, London, UK

    Google Scholar 

  31. Alvarez O (1986) How to set up a bilayer system. In: Miller C (ed) Ion channel reconstitution. Plenum Press, New York

    Google Scholar 

  32. Benz R, Fröhlich O, Läuger P et al (1975) Electrical capacity of black lipid films and lipid bilayers made from monolayers. Biochim Biophys Acta 394:323–334

    Article  PubMed  CAS  Google Scholar 

  33. Winterhalter M (2000) Black lipid membranes. Curr Opin Coll Interface Sci 5:250–255

    Article  CAS  Google Scholar 

  34. Montal M (1974) Formation of bimolecular membranes from lipid monolayers. Methods Enzymol B 32:545–554

    Article  CAS  Google Scholar 

  35. Messner P, Hollaus F, Sleytr UB (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34:202–210

    Article  Google Scholar 

  36. Sleytr UB, Sára M, Küpcü Z et al (1986) Structural and chemical characterization of S-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Arch Microbiol 146:19–24

    Article  PubMed  CAS  Google Scholar 

  37. Bartelmus W, Perschak F (1957) Schnellmethode zur Keimzahlbestimmung in der Zuckerindustrie. Z Zuckerind 7:276–281

    Google Scholar 

  38. Pum D, Sleytr UB (1995) Anisotropic crystal growth of the S-layer of Bacillus sphaericus CCM 2177 at the air/water interface. Colloids Surf A 102:99–104

    Article  CAS  Google Scholar 

  39. Pum D, Stangl G, Sponer C et al (1997) Deep ultraviolet patterning of monolayers of crystalline S-layer protein on silicon surfaces. Colloids Surf B 8:157–162

    Article  CAS  Google Scholar 

  40. Pum D, Stangl G, Sponer C et al (1997) Patterning of monolayers of crystalline S-layer proteins on a silicon surface by deep ultraviolet radiation. Microelectron Eng 35:297–300

    Article  CAS  Google Scholar 

  41. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  CAS  Google Scholar 

  42. Michel B, Bernard A, Bietsch A et al (2001) Printing meets lithography: soft approaches to high resolution patterning. IBM J Res Dev 45:697–719

    Article  CAS  Google Scholar 

  43. Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498–1511

    Article  CAS  Google Scholar 

  44. Kim E, Xia Y, Whitesides GM (1995) Making polymeric microstructures: capillary micromolding. Nature 376:581–584

    Article  CAS  Google Scholar 

  45. Györvary ES, O’Riordan A, Quinn AJ et al (2003) Biomimetic nanostructure fabrication: non-lithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Lett 3:315–319

    Article  Google Scholar 

  46. Talapin DV, Rogach AL, Kornowski A et al (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine—trioctylphosphine oxide—trioctylphospine mixture. Nano Lett 1:207–211

    Article  CAS  Google Scholar 

  47. Talapin DV, Rogach AL, Mekis I et al (2002) Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf A 202:145–154

    Article  CAS  Google Scholar 

  48. Rosenthal SJ, McBride J, Pennycook SJ et al (2007) Synthesis, surface properties, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf Sci Rep 62:111–157

    Article  PubMed  CAS  Google Scholar 

  49. Asokan S, Krueger KM, Colvin VL et al (2007) Shape-controlled synthesis of CdSe tetrapods using cationic surfactant ligands. Small 3:164–1169

    Article  Google Scholar 

  50. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos T Roy Soc A 368:333–1383

    Article  Google Scholar 

  51. Györvary ES, Schroedter A, Talapin D et al (2003) Formation of nanoparticle arrays on S-layer protein lattices. J Nanosci Nanotechnol 4:15–120

    Google Scholar 

  52. Mueller P, Rudin DO, Tien HT et al (1962) Reconstitution of cell membrane structure in vitro and its transformation into excitable systems. Nature 194:979–981

    Article  PubMed  CAS  Google Scholar 

  53. Fettiplace R, Gordon LGM, Hladky SB et al (1975) Techniques in formation and examination of black lipid bilayer membranes. In: Korn ED (ed) Methods of membrane biology, vol 4. Plenum Press, New York

    Google Scholar 

  54. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69:3561–3566

    Article  PubMed  CAS  Google Scholar 

  55. Schuster B, Györvary ES, Pum D et al (2005) Nanotechnology with S-layer proteins. In: Vo-Dinh T (ed) Protein nanotechnology: protocols, instrumentation and application, book series: methods molecular biology, vol 300. Humana Press, Totowa, NJ

    Google Scholar 

  56. Darszon A (1983) Strategies in the reassembly of membrane proteins into lipid bilayer systems and their functional assay. J Bioenerg Biomembr 15:321–334

    Article  PubMed  CAS  Google Scholar 

  57. Schindler H (1989) Planar lipid-protein membranes: strategies of formation and of detection dependencies of ion transport functions on membrane conditions. Methods Enzymol 171:225–253

    Article  PubMed  CAS  Google Scholar 

  58. Sleytr UB, Sára M, Pum D et al (2001) Characterization and use of crystalline bacterial cell surface layers. Progr Surf Sci 68:231–278

    Article  CAS  Google Scholar 

  59. Tien HT, Ottova AL (2001) The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes. J Membr Sci 189:83–117

    Article  CAS  Google Scholar 

  60. Schuster B, Sleytr UB (2009) Composite S-layer lipid structures. J Struct Biol 168:207–216

    Article  PubMed  CAS  Google Scholar 

  61. Schuster B, Sleytr UB (2005) 2D-protein crystals (S-layers) as support for lipid membranes. In: Tien TH, Ottova A (eds) Advances in planar lipid bilayers and liposomes, vol 1. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  62. Schuster B (2005) Biomimetic design of nanopatterned membranes. NanoBiotechnology 1:153–164

    Article  CAS  Google Scholar 

  63. Schuster B, Sleytr UB, Diederich A et al (1999) Probing the stability of S-layer-supported planar lipid membranes. Eur Biophys J 28:583–590

    Article  PubMed  CAS  Google Scholar 

  64. Schuster B, Sleytr UB (2002) The effect of hydrostatic pressure on S-layer supported lipid membranes. Biochim Biophys Acta 1563:29–34

    Article  PubMed  CAS  Google Scholar 

  65. Schuster B, Sleytr UB (2002) Single channel recordings of α-hemolysin reconstituted in S-layer-supported lipid bilayers. Bioelectrochemistry 55:5–7

    Article  PubMed  CAS  Google Scholar 

  66. Schuster B, Pum D, Sleytr UB (1998) Voltage clamp studies on S-layer-supported tetraether lipid membranes. Biochim Biophys Acta 1369:51–60

    Article  PubMed  CAS  Google Scholar 

  67. Schuster B, Pum D, Braha O et al (1998) Self-assembled α-hemolysin pores in an S-layer-supported lipid bilayer. Biochim Biophy Acta 1370:280–288

    Article  CAS  Google Scholar 

  68. Schuster B, Pum D, Sára M et al (2001) S-layer ultrafiltration membranes: a new support for stabilizing functionalized lipid membranes. Langmuir 17:500–503

    Article  Google Scholar 

  69. Hirn R, Schuster B, Sleytr UB et al (1999) The effect of S-layer protein adsorption and crystallization on the collective motion of a lipid bilayer studied by dynamic light scattering. Biophys J 77:2066–2074

    Article  PubMed  CAS  Google Scholar 

  70. Chang G, Spencer RH, Lee AT et al (1998) Structure of the MscL homolog from mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  PubMed  CAS  Google Scholar 

  71. Jones SE, Naik RR, Stone MO (2000) Use of small fluorescent molecules to monitor channel activity. Biochem Biophys Res Co 279:208–212

    Article  CAS  Google Scholar 

  72. Booth IR, Louis P (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr Opin Microbiol 2:166–169

    Article  PubMed  CAS  Google Scholar 

  73. Schuster B, Weigert S, Pum D et al (2003) New method for generating tetraether lipid membranes on porous supports. Langmuir 19:2392–2397

    Article  CAS  Google Scholar 

  74. Malmstadt N, Nash MA, Purnell RF et al (2006) Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett 6:1961–1965

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The research was funded by the Austrian Science Fund (FWF): P20256-B11.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Schuster, B., Sleytr, U.B. (2013). Nanotechnology with S-Layer Proteins. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics