Skip to main content

Atomic Force Microscopy for Protein Nanotechnology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 996))

Abstract

This chapter introduces atomic force microscopy (AFM) as an important tool for protein nanotechnology. A short review of AFM-based imaging, mapping, and spectroscopy of protein samples is given. AFM imaging of β-lactoglobulin nanofibrils in air is demonstrated. Basic concepts of AFM are described. Protocols for β-lactoglobulin nanofibrils and multiwall carbon nanotubes (MWCNT) samples preparation are defined. The operation of the microscope is described using MWCNT and the NanoScope E instrument in contact mode as an example. Nanostructure manipulation based on AFM nano-sweeping is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. MIAWiki page on interrelation between spectra, images and maps: http://confocal-manawatu.pbworks.com/w/page/16347061/Spectrum-Image-Map. Accessed 25 Dec 2011

  2. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett. doi:10.1103/PhysRevLett.56.930

  3. Eaton P (2010) Atomic force microscopy. Oxford University Press, Oxford

    Google Scholar 

  4. Howland R, Benatar L, Symanski C (1998) A practical guide to scanning probe microscopy. DIANE publishing company, Darby

    Google Scholar 

  5. Morris VJ, Kirby AR, Gunning AP (2009) Atomic force microscopy for biologists. Imperial College Press, London

    Google Scholar 

  6. Li H, Oberhauser AF, Fowler SB et al (2000) Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci. doi:10.1073/pnas.120048697

  7. Noy A, Frisbie CD, Rozsnyai LF et al (1995) Chemical force microscopy: exploiting chemically modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies. J Am Chem Soc. doi:10.1021/ja00135a012

  8. Yu J, Bippes CA, Hand GM et al (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem. doi:10.1074/jbc.M609317200

  9. Stroh C, Wang H, Bash R et al (2004) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0403538101

  10. Bash R, Wang H, Anderson C et al (2006) AFM imaging of protein movements: Histone H2A–H2B release during nucleosome remodelling. FEBS Lett. doi:10.1016/j.febslet.2006.06.101

  11. Puech PH, Nevoltris D, Robert P et al (2011) Force measurements of TCR/pMHC recognition at T cell surface. PLoS One. doi:10.1371/journal.pone.0022344

  12. Fuhrmann A, Ros R (2010) Single-molecule force spectroscopy: a method for quantitative analysis of ligand – receptor interactions. Nanomedicine. doi:10.2217/nnm.10.26

  13. Rico F, Chu C, Moy VT (2011) Force-Clamp measurements of receptor–ligand interactions. In: Braga PC, Ricci D (eds) Atomic force microscopy in biomedical research: methods and protocols, methods in molecular biology. Humana Press, Totowa, NJ

    Google Scholar 

  14. Kuehner F, Costa LT, Bisch PM et al (2004) LexA-DNA bond strength by single molecule force spectroscopy. Biophys J. doi:10.1529/biophysj.104.048868

  15. Rico F, Su C, Scheuring S (2011) Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. doi:10.1021/nl202351t

  16. Janovjak H, Kessler M, Oesterhelt D et al (2003) Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J. doi:10.1093/emboj/cdg509

  17. Rief M, Grubmüller H (2002) Force spectroscopy of single biomolecules. Chemphyschem. doi:10.1002/1439-7641(20020315)3:3<255::AID-CPHC255>3.0.CO;2-M

    Google Scholar 

  18. Kufer SK, Puchner EM, Gumpp H et al (2008) Single-molecule cut-and-paste surface assembly. Science. doi:10.1126/science.1151424

  19. Kwon T, Park J, Yang J et al (2009) Nanomechanical in situ monitoring of proteolysis of peptide by Cathepsin B. PLoS One. doi:10.1371/journal.pone.0006248

  20. Loveday SM, Wang XL, Rao MA et al (2010) Tuning the properties of β-lactoglobulin nanofibrils with pH, NaCl and CaCl2. Int Diary J. doi:10.1016/j.idairyj.2010.02.014

  21. Bolder SG, Vasbinder AJ, Sagis LMC, van der Linden E (2007) Heat-induced whey protein isolate fibrils: conversion, hydrolysis, and disulphide bond formation. Int Diary J. doi:10.1016/j.idairyj.2006.10.002

  22. Lapshin RV (2004) Feature-oriented scanning methodology for probe microscopy and nanotechnology. Nanotechnolgy. doi:10.1088/0957-4484/15/9/006

  23. Sikora A, Sokolov DV, Danzebrink HU (2006) Scanning probe microscope setup with interferometric drift compensation. In: Wilkening G, Koenders L (eds) Nanoscale calibration standards and methods: dimensional and related measurements in the micro- and nanometer range. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Richard Haverkamp, School of Engineering and Advanced Technology, and Dr. Mark Waterland, Institute for Fundamental Sciences, Massey University, for their support and opportunity to work with scanning probe microscopes. The author would also like to thank Dr. Mark Patchett, Institute of Molecular BioSciences, for his valuable suggestions, and Dr. Simon Loveday, Riddet Institute, and Mike Seawright, Institute for Fundamental Sciences, Massey University, for supplying protein and nanotubes samples and technical assistance with sample preparation for AFM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Sokolov, D.V. (2013). Atomic Force Microscopy for Protein Nanotechnology. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics