Skip to main content

Piezo-Electrically Driven Mechanical Stimulation of Sensory Neurons

  • Protocol
  • First Online:
Book cover Ion Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 998))

Abstract

Mechanotransduction, the conversion of a mechanical stimulus into a biological response, constitutes the basis of a variety of physiological functions such as the senses of touch, balance, proprioception, blood pressure, and hearing. In vertebrates, mechanosensation is mediated by mechanosensory neurons, whose cell bodies are located in trigeminal and dorsal root ganglia. Here, we describe an in vitro model of mechanotransduction that provides an opportunity to explore the properties of mechanosensitive channels in mammalian sensory neurons. The mechano-clamp method allows applying local force on plasma membrane of whole-cell patch-clamped sensory neurons. This technique uses a mechanical probe driven by a computer-assisted piezoelectric microstage to repeatedly stimulate sensory neurons with accurate control of stimulus strength, duration, and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:139–153

    Article  PubMed  CAS  Google Scholar 

  2. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  PubMed  CAS  Google Scholar 

  3. Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865

    Article  PubMed  CAS  Google Scholar 

  4. McCarter GC, Reichling DB, Levine JD (1999) Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 273:179–182

    Article  PubMed  CAS  Google Scholar 

  5. Hao J, Delmas P (2011) Recording of mechanosensitive currents using piezoelectrically driven mechanostimulator. Nat Protoc 6:979–990

    Article  PubMed  CAS  Google Scholar 

  6. Cummins TR, Rush AM, Estacion M, Dib-Hajj SD, Waxman SG (2009) Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc 4:1103–1112

    Article  PubMed  CAS  Google Scholar 

  7. Davie JT, Kole MH, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Hausser M (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247

    Article  PubMed  CAS  Google Scholar 

  8. Drew LJ, Wood JN, Cesare P (2002) Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J Neurosci 22:RC228

    PubMed  Google Scholar 

  9. Hao J, Delmas P (2010) Multiple desensitization mechanisms of mechanotransducer channels shape firing of mechanosensory neurons. J Neurosci 30:13384–13395

    Article  PubMed  CAS  Google Scholar 

  10. Coste B, Crest M, Delmas P (2007) Pharma-cological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 129:57–77

    Article  PubMed  CAS  Google Scholar 

  11. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  PubMed  CAS  Google Scholar 

  12. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483: 176–181

    Article  PubMed  CAS  Google Scholar 

  13. Rugiero F, Drew LJ, Wood JN (2010) Kinetic properties of mechanically activated currents in spinal sensory neurons. J Physiol 588:301–314

    Article  PubMed  CAS  Google Scholar 

  14. Hu J, Lewin GR (2006) Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J Physiol 577:815–828

    Article  PubMed  CAS  Google Scholar 

  15. McCarter GC, Levine JD (2006) Ionic basis of a mechanotransduction current in adult rat dorsal root ganglion neurons. Mol Pain 2:28

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS and by grants from the Agence Nationale de la Recherche, Fondation Schlumberger, ARCInca-2006, UPSA, IRME, and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hao, J., Ruel, J., Coste, B., Roudaut, Y., Crest, M., Delmas, P. (2013). Piezo-Electrically Driven Mechanical Stimulation of Sensory Neurons. In: Gamper, N. (eds) Ion Channels. Methods in Molecular Biology, vol 998. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-351-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-351-0_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-350-3

  • Online ISBN: 978-1-62703-351-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics