Skip to main content

Imaging Single Synaptic Vesicles in Mammalian Central Synapses with Quantum Dots

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 995))

Abstract

This protocol describes a sensitive and rigorous method to monitor the movement and turnover of single synaptic vesicles in live presynaptic terminals of mammalian central nervous system. This technique makes use of Photoluminescent semiconductor nanocrystals, quantum dots (Qdots), by their nanometer size, superior photoproperties, and pH-sensitivity. In comparison with previous fluorescent probes like styryl dyes and pH-sensitive fluorescent proteins, Qdots offer strict loading ratio, multi-modality detection, single vesicle precision, and most importantly distinctive signals for different modes of vesicle fusion. Qdots are spectrally compatible with existing fluorescent probes for synaptic vesicles and thus allow multichannel ­imaging. With easy modification, this technique can be applied to other types of synapses and cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Katz B (1969) The release of neural transmitter substances. Charles C Thomas, Springfield, IL

    Google Scholar 

  2. Suszkiw JB, Zimmermann H, Whittaker VP (1978) Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. J Neurochem 30(6):1269–1280

    Article  PubMed  CAS  Google Scholar 

  3. Lisman JE, Raghavachari S, Tsien RW (2007) The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 8(8):597–609

    Article  PubMed  CAS  Google Scholar 

  4. Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256(5057):677–679

    Article  PubMed  CAS  Google Scholar 

  5. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  6. Jackson MB, Chapman ER (2008) The fusion pores of Ca2+ -triggered exocytosis. Nat Struct Mol Biol 15(7):684–689

    Article  PubMed  CAS  Google Scholar 

  7. Spruce AE et al (1990) Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4(5):643–654

    Article  PubMed  CAS  Google Scholar 

  8. Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423(6940):643–647

    Article  PubMed  CAS  Google Scholar 

  9. He L et al (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444(7115):102–105

    Article  PubMed  CAS  Google Scholar 

  10. Richards DA, Bai J, Chapman ER (2005) Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J Cell Biol 168(6):929–939

    Article  PubMed  CAS  Google Scholar 

  11. Serulle Y, Sugimori M, Llinas RR (2007) Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. Proc Natl Acad Sci U S A 104(5):1697–1702

    Article  PubMed  CAS  Google Scholar 

  12. Betz WJ, Mao F, Bewick GS (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci 12:363–375

    PubMed  CAS  Google Scholar 

  13. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195

    Article  PubMed  Google Scholar 

  14. Aravanis AM et al (2003) Imaging single synaptic vesicles undergoing repeated fusion events: kissing, running, and kissing again. Neuropharmacology 45(6):797–813

    Article  PubMed  CAS  Google Scholar 

  15. Zenisek D et al (2002) A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35(6):1085–1097

    Article  PubMed  CAS  Google Scholar 

  16. Willig KI et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939

    Article  PubMed  CAS  Google Scholar 

  17. Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57(2):499–524

    Article  PubMed  CAS  Google Scholar 

  18. Fesce R et al (1994) Neurotransmitter release: fusion or ‘kiss-and-run’? Trends Cell Biol 4(1):1–4

    Article  PubMed  CAS  Google Scholar 

  19. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57(2):315–344

    Article  PubMed  CAS  Google Scholar 

  20. Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25(32):7324–7332

    Article  PubMed  CAS  Google Scholar 

  21. Gao X, Chan WC, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7(4):532–537

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Q, Cao YQ, Tsien RW (2007) Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci U S A 104(45):17843–17848

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Q, Li Y, Tsien RW (2009) The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323(5920):1448–1453

    Article  PubMed  CAS  Google Scholar 

  24. Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160

    Article  PubMed  CAS  Google Scholar 

  25. Dahan M et al (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445

    Article  PubMed  CAS  Google Scholar 

  26. Liu G, Tsien RW (1995) Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34(11):1407–1421

    Article  PubMed  CAS  Google Scholar 

  27. Bonneau S, Dahan M, Cohen LD (2005) Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans Image Process 14(9):1384–1395

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank my postdoctoral mentor, Dr. R. W. Tsien, for giving me the opportunity to develop this Qdot-based vesicle labeling method in his lab. I also thank Invitrogen for providing the documentation of Qdots’ properties. This work was supported by grants from NIDA and AFAR to Q.Z.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, Q. (2013). Imaging Single Synaptic Vesicles in Mammalian Central Synapses with Quantum Dots. In: Banghart, M. (eds) Chemical Neurobiology. Methods in Molecular Biology, vol 995. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-345-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-345-9_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-344-2

  • Online ISBN: 978-1-62703-345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics