Skip to main content

Targeted Metabolic Engineering Guided by Computational Analysis of Single-Nucleotide Polymorphisms (SNPs)

  • Protocol
  • First Online:
  • 4448 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

The non-synonymous SNPs, the so-called non-silent SNPs, which are single-nucleotide variations in the coding regions that give “birth” to amino acid mutations, are often involved in the modulation of protein function. Understanding the effect of individual amino acid mutations on a protein/enzyme function or stability is useful for altering its properties for a wide variety of engineering studies. Since measuring the effects of amino acid mutations experimentally is a laborious process, a variety of computational methods have been discussed here that aid to extract direct genotype to phenotype information.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zhang YP, Zhu Y, Zhu Y, Li Y (2009) The importance of engineering physiological functionality into microbes. Trends Biotechnol 27:664–672

    Article  Google Scholar 

  2. Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  Google Scholar 

  3. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  Google Scholar 

  4. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23

    Article  CAS  Google Scholar 

  5. Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9:131–137

    Article  CAS  Google Scholar 

  6. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101:8414–8419

    Article  CAS  Google Scholar 

  7. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    Article  CAS  Google Scholar 

  8. Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    Article  CAS  Google Scholar 

  9. Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    Article  CAS  Google Scholar 

  10. Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    Article  CAS  Google Scholar 

  11. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137

    Article  Google Scholar 

  12. Nieduszynski CA, Liti G (2011) From sequence to function: insights from natural variation in budding yeasts. Biochim Biophys Acta 1810:959–966

    Article  CAS  Google Scholar 

  13. Louis EJ (2011) Population genomics and speciation in yeasts. Fungal Biol Rev 25:136–142

    Article  Google Scholar 

  14. Liti G, Schacherer J (2011) The rise of yeast population genomics. C R Biol 334:612–619

    Article  CAS  Google Scholar 

  15. Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105:2319–2324

    Article  CAS  Google Scholar 

  16. Conrado RJ, Varner JD, DeLisa MP (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol 19:492–499

    Article  CAS  Google Scholar 

  17. Henry CS, Overbeek R, Xia FF, Best AA, Glass E, Gilbert J, Larsen P, Edwards R, Disz T, Meyer F et al (2011) Connecting genotype to phenotype in the era of high-throughput sequencing. Bba-Gen Subjects 1810:967–977

    Article  CAS  Google Scholar 

  18. Madsen KM, Udatha GDBRK, Semba S, Otero JM, Koetter P, Nielsen J, Ebizuka Y, Kushiro T, Panagiotou G (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6:e14763

    Article  CAS  Google Scholar 

  19. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  Google Scholar 

  20. Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  Google Scholar 

  21. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  Google Scholar 

  22. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al (2009) Real-time dna sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  Google Scholar 

  23. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  Google Scholar 

  24. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11:473–483

    Article  CAS  Google Scholar 

  25. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: quality-aware detection and correction of sequencing errors. Genome Biol 11:R116

    Article  CAS  Google Scholar 

  26. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  CAS  Google Scholar 

  27. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  28. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  29. David M, Dzamba M, Lister D, Ilie L, Brudno M (2011) SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27:1011–1012

    Article  CAS  Google Scholar 

  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  31. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491

    Article  CAS  Google Scholar 

  32. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  Google Scholar 

  33. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  Google Scholar 

  34. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  Google Scholar 

  35. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451

    Article  CAS  Google Scholar 

  36. Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19:596–604

    Article  CAS  Google Scholar 

  37. Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci U S A 106:9995–10000

    Article  CAS  Google Scholar 

  38. Bloom JD, Glassman MJ (2009) Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin. PLoS Comput Biol 5:e1000349

    Article  Google Scholar 

  39. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  Google Scholar 

  40. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  Google Scholar 

  41. Xi T, Jones IM, Mohrenweiser HW (2004) Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83:970–979

    Article  CAS  Google Scholar 

  42. George Priya Doss C, Rao S (2009) Impact of single nucleotide polymorphisms in HBB gene causing haemoglobinopathies: in silico analysis. N Biotechnol 25:214–219

    Article  CAS  Google Scholar 

  43. Yin S, Ding F, Dokholyan NV (2007) Modeling backbone flexibility improves protein stability estimation. Structure 15:1567–1576

    Article  CAS  Google Scholar 

  44. Cheng TM, Lu YE, Vendruscolo M, Lio P, Blundell TL (2008) Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms. PLoS Comput Biol 4:e1000135

    Article  Google Scholar 

  45. Arnold K, Kiefer F, Kopp J, Battey JN, Podvinec M, Westbrook JD, Berman HM, Bordoli L, Schwede T (2009) The protein model portal. J Struct Funct Genomics 10:1–8

    Article  CAS  Google Scholar 

  46. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  Google Scholar 

  47. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382

    Article  CAS  Google Scholar 

  48. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  Google Scholar 

  49. Zhang Y, Skolnick J (2004) SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 25:865–871

    Article  CAS  Google Scholar 

  50. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  51. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594

    Article  CAS  Google Scholar 

  52. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Danish Research Council for Production and Technology Sciences and the Swedish Research Council (Vetenskapsrådet Grant no: 2008-2955) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Panagiotou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Udatha, D.B.R.K.G., Rasmussen, S., Sicheritz-Pontén, T., Panagiotou, G. (2013). Targeted Metabolic Engineering Guided by Computational Analysis of Single-Nucleotide Polymorphisms (SNPs). In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics