Skip to main content

Customized Optimization of Metabolic Pathways by Combinatorial Transcriptional Engineering

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

Introduction of a heterologous metabolic pathway into a platform microorganism for applications in metabolic engineering and synthetic biology is often technically straightforward. However, the major challenge is to balance the flux in the pathway to obtain high yield and productivity in a target microorganism. To address this limitation, we recently developed a simple, efficient, and programmable approach named “customized optimization of metabolic pathways by combinatorial transcriptional engineering” (COMPACTER) for balancing the flux in a pathway under distinct metabolic backgrounds. Here we use two examples including a cellobiose-utilizing pathway and a xylose-utilizing pathway to illustrate the key steps in the COMPACTER method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  CAS  Google Scholar 

  2. Pfeifer B, Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  Google Scholar 

  3. Liao JC, Atsumi S, Hanai T (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  Google Scholar 

  4. Keasling JD, Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  Google Scholar 

  5. Liao JC, Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915

    Article  Google Scholar 

  6. Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227

    Article  CAS  Google Scholar 

  7. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  CAS  Google Scholar 

  8. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  Google Scholar 

  9. Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 11:13–19

    Article  CAS  Google Scholar 

  10. Stephanopoulos G, Luetke-Eversloh T (2008) Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: Identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng 10:69–77

    Article  Google Scholar 

  11. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Article  CAS  Google Scholar 

  12. Bujara M, Panke S (2010) Engineering in complex systems. Curr Opin Biotechnol 21:586–591

    Article  CAS  Google Scholar 

  13. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  Google Scholar 

  14. Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LBA, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862

    Article  CAS  Google Scholar 

  15. Warnecke TE, Lynch MD, Karimpour-Fard A, Lipscomb ML, Handke P, Mills T, Ramey CJ, Hoang T, Gill RT (2010) Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes. Metab Eng 12:241–250

    Article  CAS  Google Scholar 

  16. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  CAS  Google Scholar 

  17. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398

    Article  CAS  Google Scholar 

  18. Du J, Yuan Y, Si T, Li Y, Zhao H (2012) Customized Optimization of Metabolic Pathways by Combinatorial Transcriptional Engineering (COMPACTER). Nucleic Acids Res 40(18):e142

    Google Scholar 

  19. Gherardi E, Zaccolo M (1999) The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J Mol Biol 285:775–783

    Article  Google Scholar 

  20. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  Google Scholar 

  21. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    Article  CAS  Google Scholar 

  22. Li SJ, Du J, Sun J, Galazka JM, Glass NL, Cate JHD, Yang XM, Zhao HM (2010) Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a beta-glucosidase in Saccharomyces cerevisiae. Mol Biosyst 6:2129–2132

    Article  CAS  Google Scholar 

  23. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang XM, Seo JH, Glass NL, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 108:504–509

    Article  CAS  Google Scholar 

  24. Jin YS, Ni HY, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  CAS  Google Scholar 

  25. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yuan, Y., Du, J., Zhao, H. (2013). Customized Optimization of Metabolic Pathways by Combinatorial Transcriptional Engineering. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics