Skip to main content

Atomic Force Microscopy and Spectroscopy to Probe Single Membrane Proteins in Lipid Bilayers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a “lab on a tip” owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  2. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  3. Bongrand P, Capo C, Mege J-L, Benoliel A-M (1988) Use of hydrodynamic flows to study cell adhesion. In: Bongrand P (ed) Physical basis of cell adhesion. CRC Press, Boca Raton, FL, pp 125–156

    Google Scholar 

  4. Leckband DE, Israelachvili JN, Schmitt FJ, Knoll W (1992) Long-range attraction and molecular rearrangements in receptor-ligand interactions. Science 255:1419–1421

    Article  PubMed  CAS  Google Scholar 

  5. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  PubMed  CAS  Google Scholar 

  6. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A 94:4853–4860

    Article  PubMed  CAS  Google Scholar 

  7. Junker JP, Ziegler F, Rief M (2009) Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science 323:633–637

    Article  PubMed  CAS  Google Scholar 

  8. Müller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197

    Article  PubMed  CAS  Google Scholar 

  9. Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7:715–718

    Article  PubMed  CAS  Google Scholar 

  10. Muller DJ, Dufrene YF (2011) Force nanoscopy of living cells. Curr Biol 21:R212–R216

    Article  PubMed  CAS  Google Scholar 

  11. Muller DJ, Krieg M, Alsteens D, Dufrene YF (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol 20:4–13

    Article  PubMed  CAS  Google Scholar 

  12. Alegre-Cebollada J, Perez-Jimenez R, Kosuri P, Fernandez JM (2010) Single-molecule force spectroscopy approach to enzyme catalysis. J Biol Chem 285:18961–18966

    Article  PubMed  CAS  Google Scholar 

  13. Zhuang X, Rief M (2003) Single-molecule folding. Curr Opin Struct Biol 13:88–97

    Article  PubMed  CAS  Google Scholar 

  14. Brujic J, Hermans R, Walther KA, Fernandez JM (2006) Single molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin. Nat Phys 2:282–286

    Article  CAS  Google Scholar 

  15. Cyr DM, Venkataraman B, Flynn GW (1996) STM investigations of organic molecules physisorbed at the liquid−solid interface. Chem Mater 8:1600–1615

    Article  CAS  Google Scholar 

  16. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  PubMed  CAS  Google Scholar 

  17. Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472

    Article  PubMed  CAS  Google Scholar 

  18. Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–758

    Article  PubMed  CAS  Google Scholar 

  19. Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnnol 5:208–212

    Article  CAS  Google Scholar 

  20. Puchner EM, Gaub HE (2009) Force and function: probing proteins with AFM-based force spectroscopy. Curr Opin Struct Biol 19:605–614

    Article  PubMed  CAS  Google Scholar 

  21. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, vol 4. Garland Science, New York

    Google Scholar 

  22. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589

    Article  PubMed  CAS  Google Scholar 

  23. White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  PubMed  CAS  Google Scholar 

  24. Booth PJ (2003) The trials and tribulations of membrane protein folding in vitro. Biochim Biophys Acta 1610:51–56

    Article  PubMed  CAS  Google Scholar 

  25. Sachs JN, Engelman DM (2006) Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane protein function. Ann Rev Biochem 75:707–712

    Article  PubMed  CAS  Google Scholar 

  26. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  PubMed  CAS  Google Scholar 

  27. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998

    Article  PubMed  CAS  Google Scholar 

  28. Kedrov A, Janovjak H, Sapra KT, Muller DJ (2007) Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu Rev Biophys Biomol Struct 36:233–260

    Article  PubMed  CAS  Google Scholar 

  29. Engel A, Gaub HE (2008) Structure and mechanics of membrane proteins. Annu Rev Biochem 77:127–148

    Article  PubMed  CAS  Google Scholar 

  30. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Structural biology: proton powered turbine of a plant motor. Nature 405:418–419

    Article  PubMed  CAS  Google Scholar 

  31. Müller DJ, Engel A (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol 285:1347–1351

    Article  PubMed  Google Scholar 

  32. Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem 282:8895–8904

    Article  PubMed  CAS  Google Scholar 

  33. Kedrov A, Krieg M, Ziegler C, Kuhlbrandt W, Müller DJ (2005) Locating ligand binding and activation of a single antiporter. EMBO Rep 6:668–674

    Article  PubMed  CAS  Google Scholar 

  34. Park PS, Sapra KT, Kolinski M, Filipek S, Palczewski K, Muller DJ (2007) Stabilizing effect of Zn2+ in native bovine rhodopsin. J Biol Chem 282:11377–11385

    Article  PubMed  CAS  Google Scholar 

  35. Janovjak H, Kessler M, Oesterhelt D, Gaub HE, Müller DJ (2003) Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J 22:5220–5229

    Article  PubMed  CAS  Google Scholar 

  36. Cisneros DA, Oberbarnscheidt L, Pannier A, Klare JP, Helenius J, Engelhard M, Oesterhelt F, Muller DJ (2008) Transducer binding establishes localized interactions to tune sensory rhodopsin II. Structure 16:1206–1213

    Article  PubMed  CAS  Google Scholar 

  37. Sapra KT, Besir H, Oesterhelt D, Muller DJ (2006) Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J Mol Biol 355:640–650

    Article  PubMed  CAS  Google Scholar 

  38. Sapra KT, Doehner J, Renugopalakrishnan V, Padros E, Muller DJ (2008) Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin. Biophys J 95:3407–3418

    Article  PubMed  CAS  Google Scholar 

  39. Sapra KT, Balasubramanian GP, Labudde D, Bowie JU, Muller DJ (2008) Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways. J Mol Biol 376:1076–1090

    Article  PubMed  CAS  Google Scholar 

  40. Kedrov A, Janovjak H, Ziegler C, Kühlbrandt W, Müller DJ (2006) Observing folding kinetics and pathways of single antiporters. J Mol Biol 355:2–8

    Article  PubMed  CAS  Google Scholar 

  41. Stewart MP, Toyoda Y, Hyman AA, Muller DJ (2011) Force probing cell shape changes to molecular resolution. Trends Biochem Sci 36:444–450

    Article  PubMed  CAS  Google Scholar 

  42. Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ, Heisenberg CP (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436

    Article  PubMed  CAS  Google Scholar 

  43. Müller DJ, Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    Article  PubMed  CAS  Google Scholar 

  44. Müller DJ, Hand GM, Engel A, Sosinsky G (2002) Conformational changes in surface structures of isolated connexin26 gap junctions. EMBO J 21:3598–3607

    Article  PubMed  Google Scholar 

  45. Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D, Engel A (2006) Quantitative dynamic-mode scanning force microscopy in liquid. Appl Phys Lett 88:193109

    Article  CAS  Google Scholar 

  46. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740

    Article  CAS  Google Scholar 

  47. Müller DJ, Fotiadis D, Scheuring S, Müller SA, Engel A (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J 76:1101–1111

    Article  PubMed  Google Scholar 

  48. Butt H-J, Jaschke M, Ducker W (1995) Measuring surface forces in aqueous solution with the atomic force microscope. Bioelect Bioenerg 38:191–201

    Article  CAS  Google Scholar 

  49. Butt H-J (1992) Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophys J 63:578–582

    Article  PubMed  CAS  Google Scholar 

  50. Butt H-J (1992) Electrostatic interaction in scanning probe microscopy when imaging in electrolyte solutions. Nanotechnology 3:60–68

    Article  Google Scholar 

  51. Müller DJ, Engel A (1997) The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 73:1633–1644

    Article  PubMed  Google Scholar 

  52. Czajkowsky D, Allen M, Elings V, Shao Z (1998) Direct visualization of surface charge in aqueous solution. Ultramicroscopy 74:1–5

    Article  PubMed  CAS  Google Scholar 

  53. Baker AA, Helbert W, Sugiyama J, Miles MJ (2000) New insight into cellulose structure by atomic force microscopy shows the i(alpha) crystal phase at near-atomic resolution. Biophys J 79:1139–1145

    Article  PubMed  CAS  Google Scholar 

  54. Müller DJ, Büldt G, Engel A (1995) Force-induced conformational change of bacteriorhodopsin. J Mol Biol 249:239–243

    Article  PubMed  Google Scholar 

  55. Müller DJ, Engel A (2002) Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force microscopy. Methods Cell Biol 68:257–299

    Article  PubMed  Google Scholar 

  56. Karrasch S, Dolder M, Hoh J, Schabert F, Ramsden J, Engel A (1993) Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys J 65:2437–2446

    Article  PubMed  CAS  Google Scholar 

  57. Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG (1994) Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J 67:2454–2459

    Article  PubMed  CAS  Google Scholar 

  58. Fritz M, Radmacher M, Allersma MW, Cleveland JP, Stewart RJ, Hansma PK, Schmidt CF (1995) Imaging microtubles in buffer solution using tapping mode atomic force microscopy. SPIE 2384:150–157

    Article  CAS  Google Scholar 

  59. Guthold M, Zhu X, Rivetti C, Yang G, Thomson NH, Kasas S, Hansma HG, Smith B, Hansma PK, Bustamante C (1999) Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys J 77:2284–2294

    Article  PubMed  CAS  Google Scholar 

  60. Elie-Caille C, Severin F, Helenius J, Howard J, Muller DJ, Hyman AA (2007) Straight GDP-tubulin protofilaments form in the presence of taxol. Curr Biol 17:1765–1770

    Article  PubMed  CAS  Google Scholar 

  61. Hoogenboom BW, Suda K, Engel A, Fotiadis D (2007) The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370:246–255

    Article  PubMed  CAS  Google Scholar 

  62. Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK (2000) Probing protein–protein interactions in real time. Nat Struct Biol 7:644–647

    Article  PubMed  CAS  Google Scholar 

  63. Yamashita H, Voïtchovsky K, Uchihashi T, Contera SA, Ryan JF, Ando T (2009) Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 167:153–158

    Article  PubMed  CAS  Google Scholar 

  64. Junge W, Muller DJ (2011) Seeing a molecular motor at work. Science 333:704–705

    Article  PubMed  CAS  Google Scholar 

  65. Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  PubMed  CAS  Google Scholar 

  66. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  PubMed  CAS  Google Scholar 

  67. Cui Y, Bustamante C (2000) Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc Natl Acad Sci U S A 97:127–132

    Article  PubMed  CAS  Google Scholar 

  68. Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    Article  PubMed  CAS  Google Scholar 

  69. Borgia A, Williams PM, Clarke J (2008) Single-molecule studies of protein folding. Annu Rev Biochem 77:101–125

    Article  PubMed  CAS  Google Scholar 

  70. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  PubMed  CAS  Google Scholar 

  71. Wiita AP, Perez-Jimenez R, Walther KA, Grater F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127

    Article  PubMed  CAS  Google Scholar 

  72. Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–1334

    Article  PubMed  CAS  Google Scholar 

  73. Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernández JM (2011) Direct observation of disulfide isomerization in a single protein. Nat Chem 3:882–887

    Article  PubMed  CAS  Google Scholar 

  74. Dietz H, Rief M (2004) Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci U S A 101:16192–16197

    Article  PubMed  CAS  Google Scholar 

  75. Evans E (2001) Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    Article  PubMed  CAS  Google Scholar 

  76. Evans E (1998) Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss 111:1–16

    Article  PubMed  CAS  Google Scholar 

  77. Baldwin RL, Rose GD (1999) Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci 24:77–83

    Article  PubMed  CAS  Google Scholar 

  78. Baldwin RL, Rose GD (1999) Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci 24:26–33

    Article  PubMed  CAS  Google Scholar 

  79. Rief M, Fernandez JM, Gaub HE (1998) Elastically coupled two-level-systems as a model for biopolymer extensibility. Phys Rev Lett 81:4764–4767

    Article  CAS  Google Scholar 

  80. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    Article  PubMed  CAS  Google Scholar 

  81. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  PubMed  CAS  Google Scholar 

  82. Evans E (1999) Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophys Chem 82:83–97

    Article  PubMed  CAS  Google Scholar 

  83. Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Müller DJ (2004) Probing the energy landscape of the membrane protein bacteriorhodopsin. Structure 12:871–879

    Article  PubMed  CAS  Google Scholar 

  84. Nevo R, Brumfeld V, Kapon R, Hinterdorfer P, Reich Z (2005) Direct measurement of protein energy landscape roughness. EMBO Rep 6:482–486

    Article  PubMed  CAS  Google Scholar 

  85. Kedrov A, Hellawell AM, Klosin A, Broadhurst RB, Kunji ER, Müller DJ (2010) Probing the interactions of carboxy-atractyloside and atractyloside with the yeast mitochondrial ADP/ATP carrier. Structure 18:39–46

    Article  PubMed  CAS  Google Scholar 

  86. Ge L, Perez C, Waclawska I, Ziegler C, Muller DJ (2011) Locating an extracellular K+-dependent interaction site that modulates betaine-binding of the Na+-coupled betaine symporter BetP. Proc Natl Acad Sci U S A 108:E890–898

    Article  PubMed  CAS  Google Scholar 

  87. Bippes CA, Zeltina A, Casagrande F, Ratera M, Palacin M, Muller DJ, Fotiadis D (2009) Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter. J Biol Chem 284:18651–18663

    Article  PubMed  CAS  Google Scholar 

  88. Sapra KT, Park PS, Palczewski K, Muller DJ (2008) Mechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function. Langmuir 24:1330–1337

    Article  PubMed  CAS  Google Scholar 

  89. Damaghi M, Sapra KT, Koster S, Yildiz O, Kuhlbrandt W, Muller DJ (2010) Dual energy landscape: the functional state of the beta-barrel outer membrane protein G molds its unfolding energy landscape. Proteomics 10:4151–4162

    Article  PubMed  CAS  Google Scholar 

  90. Schitter G, Stark RW, Stemmer A (2004) Fast contact-mode atomic force microscopy on biological specimen by model-based control. Ultramicroscopy 100:253–257

    Article  PubMed  CAS  Google Scholar 

  91. Mahmood IA, Moheimani SOR (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80:063705

    Article  PubMed  CAS  Google Scholar 

  92. Meyer E, Hug HJ, Bennewitz R (2003) Scanning probe microscopy—the lab on a tip. Springer, Berlin

    Google Scholar 

  93. Yasumura KY, Stowe TD, Chow EM, Pfafman T, Kenny TW, Stipe BC, Rugar D (2000) Quality factors in micron- and submicron-thick cantilevers. J Microelectromech Syst 9:117–125

    Article  CAS  Google Scholar 

  94. Zong Q, Innis D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    Article  Google Scholar 

  95. Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev Sci Ins 70:4300–4303

    Article  CAS  Google Scholar 

  96. Viani MB, Schäfer TE, Chand A, Rief M, Gaub H, Hansma PK (1999) Small cantilevers for force spectroscopy of single molecules. J Appl Phys 86:2258–2262

    Article  CAS  Google Scholar 

  97. Friedrichs J, Helenius J, Muller DJ (2010) Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy. Nat Protoc 5:1353–1361

    Article  PubMed  CAS  Google Scholar 

  98. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  CAS  Google Scholar 

  99. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for calibration of atomic force cantilevers. Rev Sci Instrum 60:3131–3134

    Google Scholar 

  100. Gibson CT, Watson GS, Myhra S (1996) Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7:259–262

    Article  Google Scholar 

  101. Torii A, Sasaki M, Hane K, Okuma S (1996) A method for determining the spring constant of cantilevers for atomic force microscopy. Meas Sci Technol 7:179–184

    Article  CAS  Google Scholar 

  102. Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  103. Florin E-L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular interactions with the atomic force microscope. Biosens Bioelectron 10:895–901

    Article  CAS  Google Scholar 

  104. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  105. Muller DJ, Engel A (2008) Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr Opin Colloid Int Sci 13:338–350

    Article  CAS  Google Scholar 

  106. Pashley RM (1981) Hydration forces between mica surfaces in Li+, Na+, Na+ and Cs+ electrolyte solutions: a correlation of double layer and hydration forces with surface cation exchange properties. J Colloid Interface Sci 83:531–546

    Article  CAS  Google Scholar 

  107. Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188

    Article  PubMed  Google Scholar 

  108. Schwarz UD, Haefke H, Reimann P, Guntherodt HJ (1994) Tip artefacts in scanning force microscopy. J Microsc 173:183–197

    Article  CAS  Google Scholar 

  109. Möller C, Allen M, Elings V, Engel A, Müller DJ (1999) Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys J 77:1150–1158

    Article  PubMed  Google Scholar 

  110. Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci U S A 98:468–472

    Article  PubMed  CAS  Google Scholar 

  111. Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678

    Article  PubMed  CAS  Google Scholar 

  112. Dietz H, Bertz M, Schlierf M, Berkemeier F, Bornschlogl T, Junker JP, Rief M (2006) Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nat Protoc 1:80–84

    Article  PubMed  CAS  Google Scholar 

  113. Cisneros DA, Muller DJ, Daud SM, Lakey JH (2006) An approach to prepare membrane proteins for single-molecule imaging. Angew Chem Int Ed Engl 45:3252–3256

    Article  PubMed  CAS  Google Scholar 

  114. Kessler M, Gaub H (2006) Unfolding barriers in bacteriorhodopsin probed from the cytoplasmic and the extracellular side by AFM. Structure 14:521–527

    Article  PubMed  CAS  Google Scholar 

  115. Cisneros DA, Oesterhelt D, Müller DJ (2005) Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin. Structure 13:235–242

    Article  PubMed  CAS  Google Scholar 

  116. Müller DJ, Schoenenberger CA, Büldt G, Engel A (1996) Immuno-atomic force microscopy of purple membrane. Biophys J 70:1796–1802

    Article  PubMed  Google Scholar 

  117. Sapra KT, Park PS, Filipek S, Engel A, Müller DJ, Palczewski K (2006) Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol 358:255–269

    Article  CAS  Google Scholar 

  118. Kedrov A, Ziegler C, Janovjak H, Kuhlbrandt W, Müller DJ (2004) Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy. J Mol Biol 340:1143–1152

    Article  PubMed  CAS  Google Scholar 

  119. Sapra KT, Damaghi M, Koster S, Yildiz O, Kuhlbrandt W, Muller DJ (2009) One beta hairpin after the other: exploring mechanical unfolding pathways of the transmembrane beta-barrel protein OmpG. Angew Chem Int Ed Engl 48:8306–8308

    Article  PubMed  CAS  Google Scholar 

  120. Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H (2002) Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys J 83:3578–3588

    Article  PubMed  Google Scholar 

  121. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  PubMed  CAS  Google Scholar 

  122. Stahlberg H, Muller DJ, Suda K, Fotiadis D, Engel A, Meier T, Matthey U, Dimroth P (2001) Bacterial Na(+)-ATP synthase has an undecameric rotor. EMBO Rep 2:229–233

    Article  PubMed  CAS  Google Scholar 

  123. Scheuring S, Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309:484–487

    Article  PubMed  CAS  Google Scholar 

  124. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215

    Article  PubMed  CAS  Google Scholar 

  125. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KTS was supported by an independent Marie Curie Intra-European Fellowship. KTS expresses gratitude to Prof. Daniel Müller and Dr. Stefania Mari for their invaluable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tanuj Sapra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sapra, K.T. (2013). Atomic Force Microscopy and Spectroscopy to Probe Single Membrane Proteins in Lipid Bilayers. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics