Skip to main content

Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions

  • Protocol
  • First Online:
Book cover Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Solid-state NMR spectroscopy has been developed for the investigation of membrane-associated polypeptides and remains one of the few techniques to reveal high-resolution structural information in liquid-disordered phospholipid bilayers. In particular, oriented samples have been used to investigate the structure, dynamics, and topology of membrane polypeptides. Much of the previous solid-state NMR work has been developed and performed on peptides, but the technique is constantly expanding towards larger membrane proteins. Here, a number of protocols are presented describing among other the reconstitution of membrane proteins into oriented membranes, monitoring membrane alignment by 31P solid-state NMR spectroscopy; investigations of the protein by one- and two-dimensional 15N solid-state NMR; and measurements of the lipid order parameters using 2H solid-state NMR spectroscopy. Using such methods solid-state NMR spectroscopy has revealed a detailed picture of the ensemble of both lipids and proteins and their mutual interdependence in the bilayer environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  2. Boyd D, Schierle C, Beckwith J (1998) How many membrane proteins are there. Protein Sci 7:201–205

    Article  PubMed  CAS  Google Scholar 

  3. Wu BL, Chien EYT et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed  CAS  Google Scholar 

  4. Congreve M, Langmead C, Marshall FH (2011) The use of GPCR structures in drug design. Adv Pharamcol 62:1–36

    Article  CAS  Google Scholar 

  5. Tapaneeyakorn S, Goddard AD et al (2011) Solution- and solid-state NMR studies of GPCRs and their ligands. Biochim Biophys Acta 1808:1462–1475

    Article  PubMed  CAS  Google Scholar 

  6. Ramamoorthy A, Kandasamy SK et al (2007) Structure, topology, and tilt of cell-signaling peptides containing nuclear localization sequences in membrane bilayers determined by solid-state NMR and molecular dynamics simulation studies. Biochemistry 46:965–975

    Article  PubMed  CAS  Google Scholar 

  7. Franks WT, Linden AH et al (2012) Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions. Eur J Cell Biol 91:340–348

    Article  PubMed  CAS  Google Scholar 

  8. Etzkorn M, Seidel K et al (2010) Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18:293–300

    Article  PubMed  CAS  Google Scholar 

  9. Bechinger B, Resende JM, Aisenbrey C (2011) The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 153:115–125

    Article  PubMed  CAS  Google Scholar 

  10. Bechinger B, Kinder R et al (1999) Peptide structural analysis by solid-state NMR spectroscopy. Biopolymers 51:174–190

    Article  PubMed  CAS  Google Scholar 

  11. Aisenbrey C, Bertani P, Bechinger B (2010) Solid-state NMR investigations of membrane-associated antimicrobial peptides. In: Guiliani A, Rinaldi AC (eds) Antimicrobial peptides. Humana Press, Springer, N.Y., pp 209–233

    Chapter  Google Scholar 

  12. Bechinger B, Sizun C (2003) Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn Reson 18A:130–145

    Google Scholar 

  13. Salnikov E, Aisenbrey C et al (2010) Solid-state NMR approaches to measure topological equilibria and dynamics of membrane polypeptides. Biochim Biophys Acta 1798:258–265

    Article  PubMed  CAS  Google Scholar 

  14. Aisenbrey C, Bechinger B (2004) Tilt and rotational pitch angles of membrane-inserted polypeptides from combined 15N and 2H solid-state NMR spectroscopy. Biochemistry 43:10502–10512

    Article  PubMed  CAS  Google Scholar 

  15. Cullis PR, De Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559:399–420

    Article  PubMed  CAS  Google Scholar 

  16. Kim C, Spano J et al (2009) Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3. Biochim Biophys Acta 1788:1482–1496

    Article  PubMed  CAS  Google Scholar 

  17. Bechinger B, Salnikov ES (2012) The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 165:282–301

    Article  PubMed  CAS  Google Scholar 

  18. Salnikov ES, Mason AJ, Bechinger B (2009) Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie 91:743

    Article  Google Scholar 

  19. Mason AJ, Martinez A et al (2006) The antibiotic and DNA-transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB J 20:320–322

    PubMed  CAS  Google Scholar 

  20. Seelig J, Macdonald PM, Scherer PG (1987) Phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26:7535–7541

    Article  PubMed  CAS  Google Scholar 

  21. Bechinger B, Seelig J (1991) Interaction of electric dipoles with phospholipid head groups. A 2 H and 31 P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemitry 30:3923–3929

    Article  CAS  Google Scholar 

  22. Bechinger B (2005) Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR study. Biochim Biophys Acta 1712:101–108

    Article  PubMed  CAS  Google Scholar 

  23. Aisenbrey C, Sudheendra US et al (2007) Helix orientations in membrane-associated Bcl-X L determined by 15 N solid-state NMR spectroscopy. Eur Biophys J 36:451–460

    Article  PubMed  CAS  Google Scholar 

  24. Nedelkina S, Gokce I et al (2008) High-yield expression and purification of soluble forms of the anti-apoptotic Bcl-x(L) and Bcl-2 as TolAIII-fusion proteins. Protein Expr Purif 29:1633–1644

    Google Scholar 

  25. Aisenbrey C, Cusan M et al (2008) Specific isotope labeling of colicin E1 and B channel domains for membrane topological analysis by oriented solid-state NMR spectroscopy. ChemBioChem 9:944–951

    Article  PubMed  CAS  Google Scholar 

  26. Rosay M, Tometich L et al (2010) Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results. Phys Chem Chem Phys 12:5850–5860

    Article  PubMed  CAS  Google Scholar 

  27. Salnikov E, Rosay M et al (2010) Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J Am Chem Soc 132:5940–5941

    Article  PubMed  CAS  Google Scholar 

  28. Bechinger B, Opella SJ (1991) Flat-coil probe for NMR spectroscopy of oriented membrane samples. J Magn Reson 95:585–588

    Google Scholar 

  29. Nielsen NC, Daugaard P et al (1995) A flat-coil NMR probe with hydration control of oriented phospholipid-bilayer samples. J Biomol NMR 5:311–314

    Article  PubMed  CAS  Google Scholar 

  30. Bechinger B (2011) Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. J Pept Sci 17:306–314

    Article  PubMed  CAS  Google Scholar 

  31. Bechinger B, Bertani P et al (2010) The structural and topological analysis of membrane polypeptides by oriented solid-state NMR spectroscopy: sample preparation and theory. In: Castanho M (ed.) Membrane-active peptides: methods and results on structure and function. International University Line, La Jolla, California, USA, pp 196–215

    Google Scholar 

  32. Chenal A, Prongidi-Fix L et al (2009) Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy. J Mol Biol 391:872–883

    Article  PubMed  CAS  Google Scholar 

  33. Lakey JH, Slatin SL (2001) Pore-forming colicins and their relatives. Curr Top Microbiol Immunol 257:131–161

    Article  PubMed  CAS  Google Scholar 

  34. Raja M, Vales E (2011) Improved technique for reconstituting incredibly high and soluble amounts of tetrameric K(+) channel in natural membranes. J Membr Biol 241:141–144

    Article  PubMed  CAS  Google Scholar 

  35. Highsmith S (1990) On the mechanism of detergent modification of myosin structure and function. J Biochem Tokyo 107:554–558

    PubMed  CAS  Google Scholar 

  36. Berger S, Braun S (2004) 200 And more basic NMR experiments: a practical course. Weinheim, Wiley-VCH Verlag

    Google Scholar 

  37. Rance M, Byrd RA (1983) Obtaining high-fidelity spin-1/2 powder spectra in anisotropic media: phase-cycled Hahn echo spectroscopy. J Magn Reson 52:221–240

    CAS  Google Scholar 

  38. Ramamoorthy A, Wei Y, Lee D (2004) PISEMA solid-state NMR spectroscopy. Ann Rep NMR Spec 52:1–52

    Article  Google Scholar 

  39. Davis JH, Jeffrey KR et al (1976) Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem Phys Lett 42:390–394

    Article  CAS  Google Scholar 

  40. Salnikov E, Bechinger B (2011) Lipid-mediated peptide–peptide interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys J 100:1473–1480

    Article  PubMed  CAS  Google Scholar 

  41. O'Brian FEM (1948) The control of humidity by saturated salt solutions. J Sci Instr 25:73–76

    Article  Google Scholar 

  42. Ottiger M, Bax A (1998) Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J Biomol NMR 12:361–372

    Article  PubMed  CAS  Google Scholar 

  43. Salnikov ES, Friedrich H et al (2009) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15 N and 31 P solid-state NMR spectroscopy. Biophys J 96:86–100

    Article  PubMed  CAS  Google Scholar 

  44. Traikia M, Warschawski DE et al (2000) Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and P-31-nuclear magnetic resonance. Eur Biophys J Biophys 29:184–195

    Article  CAS  Google Scholar 

  45. Yokogawa M, Takeuchi K, Shimada I (2005) Bead-linked proteoliposomes: a reconstitution method for NMR analyses of membrane protein–ligand interactions. J Am Chem Soc 127:12021–12027

    Article  PubMed  CAS  Google Scholar 

  46. Hjelmeland LM, Nebert DW, Osborne JC (1983) Sulfobetaine derivatives of bile-acids – non-denaturing surfactants for membrane biochemistry. Anal Biochem 130:72–82

    Article  PubMed  CAS  Google Scholar 

  47. Womack MD, Kendall DA, Macdonald RC (1983) Detergent effects on enzyme-activity and solubilization of lipid bilayer-membranes. Biochim Biophys Acta 733:210–215

    Article  PubMed  CAS  Google Scholar 

  48. Banerjee P, Joo JB et al (1995) Differential solubilization of lipids along with membrane-proteins by different classes of detergents. Chem Phys Lipids 77:65–78

    Article  PubMed  CAS  Google Scholar 

  49. Hjelmeland LM (1980) A non-denaturing Zwitterionic detergent for membrane biochemistry – design and synthesis. Proc Natl Acad Sci USA 77:6368–6370

    Article  PubMed  CAS  Google Scholar 

  50. Vanaken T, Foxallvanaken S et al (1986) Alkyl glycoside detergents – synthesis and applications to the study of membrane-proteins. Methods Enzymol 125:27–35

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs JJ, Anderson RA, Watson TR (1971) Interactions in phenol-sodium dodecyl sulphate-water systems. J Pharm Pharmacol 23:148–149

    Article  PubMed  CAS  Google Scholar 

  52. Lauterwein J, Bosch C et al (1979) Physicochemical studies of the protein–lipid interactions in melittin-containing micelles. Biochim Biophys Acta 556:244–264

    Article  PubMed  CAS  Google Scholar 

  53. Palladino P, Rossi F, Ragone R (2010) Effective critical Micellar concentration of a zwitterionic detergent: a fluorimetric study on n-dodecyl phosphocholine. J Fluoresc 20:191–196

    Article  PubMed  CAS  Google Scholar 

  54. Ross J, Olivier JP (1959) A new method for the determination of critical micelle concentrations of uncharged association colloids in aqueous or in non-aqueous solution. J Phys Chem 63:1671–1674

    Article  CAS  Google Scholar 

  55. Dixon AM, Venable RM et al (2002) Micelle-bound conformation of a hairpin-forming peptide: combined NMR and molecular dynamics study. Biopolymers 65:284–298

    Article  PubMed  CAS  Google Scholar 

  56. Lorber B, Bishop JB, Delucas LJ (1990) Purification of octyl beta-d-glucopyranoside and reestimation of its Micellar size. Biochim Biophys Acta 1023:254–265

    Article  PubMed  CAS  Google Scholar 

  57. Hierrezuelo JM, Aguiar J, Ruiz CC (2005) Micellar properties of a mixed surfactant system constituted by n-octyl-beta-D-thioglucopyranoside and sodium dodecyl sulphate. Coll Surf A 264:29–36

    Article  CAS  Google Scholar 

  58. Molina-Bolivar JA, Hierrezuelo JM, Ruiz CC (2006) Effect of NaCl on the self-aggregation of n-octyl beta-D-thioglucopyranoside in aqueous medium. J Phys Chem B 110:12089–12095

    Article  PubMed  CAS  Google Scholar 

  59. Coll H (1970) Study of ionic surfactants by membrane osmometry. J Phys Chem 74:520–528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The help and comments by Jesus Raya and Philippe Bertani on the nutation and PISEMA experiments are gratefully acknowledged. We are grateful for the financial support by the Deutsche Forschungsgemeinschaft (postdoctoral grant to MM), the University of Strasbourg (PPF RMN), the CNRS (NMR equipment), and the Chemistry Institute (UMR7177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Bechinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aisenbrey, C., Michalek, M., Salnikov, E.S., Bechinger, B. (2013). Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics