Skip to main content

Programming Human Dendritic Cells with mRNA

  • Protocol
  • First Online:
Book cover Synthetic Messenger RNA and Cell Metabolism Modulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

Transfecting with in vitro transcribed, protein-encoding mRNA is a simple yet effective method to express high levels of the desired RNA-encoded proteins in primary cells. Cells can be transfected with antigen-encoding mRNA, which is translated into protein and is processed by the cellular antigen-processing pathway to generate antigen-presenting cells. Another elegant and increasingly popular application is to transfect cells with mRNA that encodes immune modulating molecules (cytokines, chemokines, toll-like receptors (TLRs), immune receptor ligands, immune receptor targeting antibodies) which, when translated into protein, can program cell behavior and/or function. In this chapter we describe an efficient method to deliver mRNA into human dendritic cells (DCs) by electroporation. This is currently the method of choice to deliver mRNA into antigen-presenting cells for generating vaccines for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588–2592

    Article  PubMed  CAS  Google Scholar 

  2. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  PubMed  CAS  Google Scholar 

  3. Nair S, Boczkowski D, Pruitt S, Urban J (2011) RNA in cancer vaccine therapy. In: Bot A, Obrocea M, Marincola F (eds) Cancer vaccines: from research to clinical practice pp 217–231

    Google Scholar 

  4. Bringmann A, Held SA, Heine A, Brossart P (2010) RNA vaccines in cancer treatment. J Biomed Biotechnol 2010(623687):1–12

    Article  Google Scholar 

  5. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263

    Article  PubMed  CAS  Google Scholar 

  6. Boczkowski D, Lee J, Pruitt S, Nair S (2009) Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther 16(12):900–911

    Article  PubMed  CAS  Google Scholar 

  7. Boczkowski D, Nair S (2010) RNA as performance-enhancers for dendritic cells. Expert Opin Biol Ther 10:563–574

    Article  PubMed  CAS  Google Scholar 

  8. Bonehill A, Van Nuffel AM, Corthals J, Tuyaerts S, Heirman C, Francois V, Colau D, van der Bruggen P, Neyns B, Thielemans K (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375

    Article  PubMed  CAS  Google Scholar 

  9. Bontkes HJ, Kramer D, Ruizendaal JJ, Meijer CJ, Hooijberg E (2008) Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin Immunol 127:375–384

    Article  PubMed  CAS  Google Scholar 

  10. Cisco RM, Abdel-Wahab Z, Dannull J, Nair S, Tyler DS, Gilboa E, Vieweg J, Daaka Y, Pruitt SK (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol 172:7162–7168

    PubMed  CAS  Google Scholar 

  11. Dannull J, Lesher DT, Holzknecht R, Qi W, Hanna G, Seigler H, Tyler DS, Pruitt SK (2007) Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood 110:4341–4350

    Article  PubMed  CAS  Google Scholar 

  12. Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B, Gilboa E, Vieweg J (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105:3206–3213

    Article  PubMed  CAS  Google Scholar 

  13. Lee J, Dollins CM, Boczkowski D, Sullenger BA, Nair S (2008) Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology 125:229–240

    Article  PubMed  CAS  Google Scholar 

  14. Pruitt SK, Boczkowski D, de Rosa N, Haley NR, Morse MA, Tyler DS, Dannull J, Nair S (2011) Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 41(12):3553–3563

    Article  PubMed  CAS  Google Scholar 

  15. Tcherepanova IY, Adams MD, Feng X, Hinohara A, Horvatinovich J, Calderhead D, Healey D, Nicolette CA (2008) Ectopic expression of a truncated CD40L protein from synthetic post-transcriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion. BMC Mol Biol 9:90

    Article  PubMed  Google Scholar 

  16. Zhao Y, Boczkowski D, Nair SK, Gilboa E (2003) Inhibition of invariant chain expression in dendritic cells presenting endogenous antigens stimulates CD4+ T-cell responses and tumor immunity. Blood 102:4137–4142

    Article  PubMed  CAS  Google Scholar 

  17. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56

    Article  PubMed  Google Scholar 

  18. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028–1034

    PubMed  CAS  Google Scholar 

  19. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  PubMed  CAS  Google Scholar 

  20. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E (2003) Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102:964–971

    Article  PubMed  CAS  Google Scholar 

  21. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369

    Article  PubMed  CAS  Google Scholar 

  22. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6:1011–1017

    Article  PubMed  CAS  Google Scholar 

  23. Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 7:1486–1495

    PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1–3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 7.43–7.45

    Google Scholar 

  25. Strobel I, Berchtold S, Gotze A, Schulze U, Schuler G, Steinkasserer A (2000) Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther 7:2028–2035

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, J., Boczkowski, D., Nair, S. (2013). Programming Human Dendritic Cells with mRNA. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics